
Learning Practical Policies for Populations with

Implementation Costs

Junlong Aaron Zhou∗, Michael Gechter†, and Cyrus Samii‡

October 24, 2022

Abstract

We use a sample in which treatment assignment is unconfounded to learn a treatment-

targeting policy that accounts for implementation costs in the population. The resulting

“practical” treatment policy trades gains from complex targeting for reductions in costs

from simplifying the targeting. We define a penalized welfare criterion that incorporates

measurement and complexity costs and solve for the optimal coarsened policy. We

derive a bound on welfare loss for the coarse policy. We use a revealed preference

method for bounding complexity costs on a scale commensurate with a welfare measure

and illustrate using a conditional cash transfer experiment in Mexico.
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1 Introduction

We consider the problem of using data from a sample in which treatment is unconfounded

to learn treatment-targeting policies for a population in which implementation costs are

non-negligible. Our paper is motivated by practical concerns in policy design. With large-

scale randomized controlled trials (RCTs), we can learn about how treatment effects vary

for different types of recipients. It is natural to use these results to define optimal policies,

determining who should be prioritized or eligible for receiving treatment, in the full population.

However, implementing such treatment policies is never free of costs and associated constraints.

Treatment policies can be expensive if they require many inputs (e.g., extensive individual-

level information). Complex treatment policies, which depend on complicated combinations

of inputs, may be impossible for lay persons to understand. This could undermine the public

legitimacy of the policy or it could prevent practitioners from understanding the rationale

behind what they are doing (Rudin, 2019). It is for these reasons that we seek ways to

simplify and coarsen treatment policies.

We want the coarsening to be optimal in the sense of improving welfare for recipients while

also keeping implementation costs manageable. The approach that we take brings together

results on penalized welfare maximization due to Mbakop and Tabord-Meehan (2021), policy

learning due to Kitagawa and Tetenov (2018), Athey and Wager (2021), and Zhou, Athey,

and Wager (2022), and interpretable machine learning for practical treatment regimes (see

Lakkaraju and Rudin (2017), and Rudin, Chen, Chen, Huang, Semenova, and Zhong (2022)

for a review). Following Lakkaraju and Rudin (2017), we specify implementation costs as

the sum of two terms: the complexity of the policy (e.g., the depth of an assignment tree or

the number terms in a linear scoring rule) and the measurement costs for the inputs into the

policy (e.g. the cost of a medical test). As in Athey and Wager (2021), we use a two-step

approach that first constructs doubly-robust conditional treatment effect (or welfare) scores

based on a high-dimensional machine learning model, and in the second step works with

these scores to derive an optimally coarsened policy using an interpretable (e.g. tree-based
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or linear) policy rule. Our methods and analysis covers both randomized experiments and

observational studies under unconfoundedness.

The two-step approach is informed by Chernozhukov, Demirer, Duflo, and Fernandez-Val

(2018), who discuss problems with using generally inconsistent machine learning predictions

directly, and strategies for reliable inference with coarser estimands. The prior literature on

treatment assignment starting with Manski (2004) evaluates the performance of policies in

terms of regret, the deviation in welfare from that of the optimal policy at the population

level. Our approach also evaluates welfare in terms of regret, while adding implementation

costs. Based on the ways that welfare losses are traded for gains in terms of simplicity or

measurement cost-savings, our approach arrives at an optimal coarsening. As such, the

complexity of the selected policy is endogenous, in a manner that is distinct from the fixed-

complexity policy classes considered by Kitagawa and Tetenov (2018) and Athey and Wager

(2021). The complexity and measurement costs operate as additional penalization criteria in

a welfare maximization problem already penalized to prevent overfitting. This is a variation

on the penalized welfare maximization approach of Mbakop and Tabord-Meehan (2021),

although one that goes beyond their concern for overfitting to also take implementation costs

into account. Following Mbakop and Tabord-Meehan (2021)’s results, we derive a bound

on the regret from our coarsening algorithm to show how increased information improves

learning.

Using our approach requires construction of welfare scores and then specification of

complexity and measurement costs in terms that are commensurate with these scores. We

illustrate how to do this through an application to the experimental evaluation of the

PROGRESA program in Mexico. PROGRESA aimed to alleviate current and future poverty

levels through cash transfers, the largest portion of which were distributed conditional on

children’s school enrollment. The PROGRESA evaluation collected many covariates, allowing

in principle for defining targeting strategies that could be more efficient than the program’s

original eligibility criteria. For the welfare scores, we use the social welfare outcome from
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Gechter, Samii, Dehejia, and Pop-Eleches (2018), which has the policymaker taking into

account a desire for poverty alleviation in the present as well as future earnings gains due

to the program’s conditionality causing children to enroll for an additional year of school.

The welfare scores are on the scale of contemporary Mexican pesos. The monetary costs of

alternative measurement plans are documented for this case in Skoufias, Davis, and Behrman

(1999). For complexity costs, we compare the program eligibility criteria chosen by the

Mexican government to other plausible alternatives of greater or lesser complexity to identify

the government’s implicit complexity cost in monetary terms using a revealed preference

argument.

We contribute to the literature on statistical policy learning in econometrics by addressing

practical cost concerns. This strand of literature (a partial list beyond those already cited

includes Dehejia, 2005; Hirano and Porter, 2009; Stoye, 2009) considers optimal policy design

as a statistical decision problem of maximizing population welfare. We extend this literature

by addressing the practical issues a social planner faces when bringing a policy to the full

population: costs of accessing the data needed to implement the policy and concerns about

interpretability.

Finally, we contribute to the literature on policy learning using machine learning methods.

The development of machine learning methods to characterize treatment effect heterogeneity

motivates using machine learning tools to design individual-level policies (Laber and Zhao,

2015; Qian and Murphy, 2011). In bio-statistics, the literature on subgroup analysis develops

methods to detect the subgroup with the largest treatment effect based on observed outcomes

(Foster, Taylor, and Ruberg, 2011; Foster, Taylor, Kaciroti, and Nan, 2015; Cai, Lu, West,

Mehrotra, and Huang, 2021). More recently, the connection between policy design and

classification problems has been explored (Zhang, Tsiatis, Davidian, Zhang, and Laber,

2012; Kallus, 2017; Zhang, Tsiatis, Laber, and Davidian, 2012; Chen and Lee, 2018). The

literature on interpretable machine learning also addresses practical cost concerns when using

machine learning for policy design (Lakkaraju and Rudin, 2017; Rudin et al., 2022). However,
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prior work in this literature is specific to particular machine learning algorithms which may

not accord with the policymaker’s needs or fit the data well, while our approach provides

conditions on the first-stage doubly-robust scores which different machine learning methods

could meet. In addition, the second stage of our algorithm can use any interpretable machine

learning method which can be made sensitive to implementation costs. We illustrate using

linear and tree-based rules.

This paper is organized as follows: in section 2 we present our inferential setting and

review optimal treatment assignment without implementation costs. In section 3 we introduce

our approach to introducing implementation costs. Section 4 details the estimation algorithm

and section 5 states the theoretical results. Section 6 presents the results from our application

to the PROGRESA evaluation.

2 Setting

We consider a sample of units indexed by i = 1, ..., n drawn from some large population

Z. Unit i in the sample is assigned a binary treatment Di ∈ {0, 1}, and is characterized

by a p-vector of measured pre-treatment covariates Xi ∈ X ⊂ Rp, and possesses potential

outcomes (Yi(1), Yi(0)) ∈ R2 depending on whether Di = 1 or 0, respectively. Agents do

not observe the full schedule of potential outcomes, but rather the realized outcome Yi =

DiYi(1) + (1 − Di)Yi(0) for unit i in the sample. Unit i’s treatment effect is τi = Yi(1) − Yi(0).

We write the joint distribution for the sample potential outcomes, treatment, and covariates

as (Yi(1), Yi(0), Di, Xi)n
i=1 ∼ Pn, where Pn depends on population values, sampling design,

and the treatment assignment mechanism. Then, in the population, potential outcomes

and covariates are distributed as (Y (1), Y (0), X) ∼ P . Outcomes realized in the population

depend on whether someone is assigned to receive treatment or not, and this decision is

encoded in terms of the indicator π, defined below.

Throughout this paper, we will assume unconfoundedness, i.e.
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Assumption 1 (Unconfoundedness) Under P n, the sample distribution satisfies

(Yi(1), Yi(0)) ⊥⊥ Di|Xi.

This assumption is satisfied by construction in randomized experiments, our leading case,

but may also hold in observational studies. Under assumption 1, we can estimate conditional

treatment effects from the sample.

The policymaker’s goal is to use the data available in the sample to design a policy

determining treatment assignments for all individuals in Z on the basis of their characteristics

Xi. We define a policy π(·) ∈ Π as a mapping π : X → {0, 1}. Π is a policy space, containing

all candidate policies. There are many policies that a planner could consider for assigning

treatments to individuals in Z. We provide two specific examples below.

Example 2.1 Uniform policy: Π = {∀k ∈ Z, πk = 1 or πk = 0}.

Under the uniform policy, the planner either assigns the treatment to all individuals, or to

none. Such a policy may be reasonable when the planner’s fairness considerations necessitate

treating everyone equally, regardless of characteristics Xi, such as whether or not to reimburse

a basic healthcare expense. The uniform policy may also be optimal when the welfare benefits

of a more targeted policy do not outweigh its implementation costs.

Example 2.2 Threshold allocation: Π = {π : π = 1{x(j) ≤ c} or 1{x(j) ≥ c}},

where the superscript (j) denotes the jth element of x, for example student GPA. Such a

policy may be reasonable to reward effort: students may get a scholarship only when a GPA

requirement is met.

Note that the set of candidate policies Π can contain a range of simple to complex policies.

The second example has a policy space that is more complicated than the first. We formally

discuss the measure of complexity below.

Prior to introducing implementation concerns, suppose the social planner wants to select a

policy based on expected impact for a suitably-chosen (welfare) outcome. For such a planner,
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we write the expected social welfare of a policy π as

W (π) = E[Yi(π(Xi)) − Yi(0)] = E[τiπ(Xi)],

where E[·] taken with respect to the population distribution P . As in our application, by

appropriately defining the outcome, this specification allows for social welfare functions that

take non-linear transformations of outcome measurements and covariates in the data so long

as welfare remains additive across agents (as in Haushofer, Niehaus, Paramo, Miguel, and

Walker (2022)). It does not cover the non-additive social welfare functions considered in, e.g.,

Kitagawa and Tetenov (2021).

The optimal policy within the feasible set of policies Π satisfies

π∗ = arg max
π∈Π

W (π). (1)

A difficulty in computing this optimum is that the τi are not observable, because of the

fundamental problem of causal inference (Holland, 1986). A standard approach in the current

literature is to construct an observable score that allows one to identify the correct optimum

in expectation. So as to generalize to both randomized experiments and observational studies

under unconfoundedness, instead of τi in the expression for W (π), we follow Athey and Wager

(2021) and use the doubly robust welfare score:

Γi = m(Xi, 1) − m(Xi, 0) + Di − e(Xi)
e(Xi)(1 − e(Xi))

(Yi − m(Xi, Di))

where m(x, d) represents the counterfactual response surface with treatment equal to d and

e(x) = P [Di = 1|Xi = x], the propensity score. Using the doubly robust scores has the

benefit of generalizing our approach to settings with observational or experimental data,

although this generalization does imply that some of our analyses will rely on asymptotic

results.
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We estimate each individual’s score value according to the out-of-sample procedure:

Γ̂i = m̂−k(i)
n (Xi, 1) − m̂−k(i)

n (Xi, 0) + Di − ê−k(i)
n (Xi)

ê
−k(i)
n (Xi)(1 − ê

−k(i)
n (Xi))

(Yi − m̂−k(i)
n (Xi, Di)), (2)

where the data are evenly split into K folds and k(i) denotes the fold containing i-th

observation. We assume we have uniformly consistent estimators of the response surface,

conditional treatment effect, and propensity score such that we satisfy satisfy assumption 2

in Athey and Wager (2021), which we restate in our terms as assumption 5 in the appendix.

From the above, we can see that W (π) = E[τiπ(Xi)] = E[Γiπ(Xi)]. We will use the

estimated score Γ̂i to define a sample analogue of the welfare criterion as

Wn(π) = En[π(Xi)Γ̂i]

where En[·] is a consistent estimator for E[·] applied to the sample data. (Whereas E[·] defines

a fixed value on Z, En[·] defines a value that varies randomly depending on the realized

sample and treatment allocation.) For given policy space Π, we can find the estimated

optimal policy solving the sample analog of expression (1):

π̂∗ = arg max
π∈Π

Wn(π). (3)

3 Coarsening Policy with Implementation Costs

Having defined our concepts, we revisit the social planner’s implementation problem. A

social planner does not just care about participant outcomes, but also takes into account the

costs of policy implementation. Kitagawa and Tetenov (2018) consider an aggregate budget

constraint for (non-stochastic) treatment costs which the program may not violate.1 For

example, suppose the new treatment is costly to implement, say costing c dollars for each
1Sun (2021) introduces a stochastic budget constraint which must be satisfied asymptotically.
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individual receiving it, and the social planner has a total budget of B dollars. This budget

constraint can be directly imposed as a restriction on the policy space Π. The social planner

now solves an optimization problem on the restricted policy space:

max
π∈Π∑

i
c×πi≤B

Wn(π).

However, this is not the only cost concern a social planner may have.

First, the social planner may care about the cost of accessing the data used for treatment

assignment. Experimental program evaluations often collect data on a large number of

indicators, for example to detect treatment effect heterogeneity. But when the time comes to

implement the policy in the full population it is more practical to collect only the minimal

set of variables necessary to perform treatment assignment, with some indicators being more

expensive to collect than others. For example, policymakers designing the PROGRESA

program in Mexico wanted to target cash transfers to poorer households and faced a choice of

how to determine eligibility in the population (Skoufias, 2005). Options included (1) measures

of community deprivation (for example, the share of households with a dirt floor) available in

pre-collected census data and (2) answers to survey questions about household characteristics

and assets. Option 1 involves no additional cost while option 2 requires program staff to

interview potential program participants.

Second, there are costs associated with complicated policies. Ultimately the PROGRESA

program designers chose to combine options 1 and 2 to assign treatment in rural areas by

initially classifying communities as eligible/ineligible based on the first principal component

of a set of community-level correlates of poverty. Then, within eligible communities, the

program determined the eligibility of households according to a linear function of 13 household

characteristics (Skoufias et al., 1999; Coady, Martinelli, and Parker, 2013). Santiago Levy,

chief architect of the program, attributes part of its durability across administrations to

the transparency of its eligibility requirements. Thanks to the linearity of the treatment
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assignment rule within eligible communities, the household-level eligibility requirements were

transparent enough to be explained to citizens and members of the government as a point

system, with different household assets and characteristics being worth different amounts of

points (Levy, 2006).

A complicated policy can also bring the costs of requiring professionals to implement it.

For example, the “assign-to-all” policy is typically easier to carry out than the threshold-

allocation policy, because the latter may require professionals to carefully evaluate individuals’

characteristics as inputs to a decision according to a policy manual. Medical treatments,

for example, require professional expertise to check individuals’ physical characteristics,

comorbidity, and potential drug-drug interactions, and then make decisions based on the

measured features. Simpler, interpretable, and easy-to-carry-out policy may be desirable for

keeping such costs manageable, within acceptable bounds of expected treatment effectiveness.

The existing literature (e.g. Kitagawa and Tetenov, 2018) mentions these additional cost

concerns and suggests that they can also be incorporated by restricting the policy space

according to the budget, but this can be too narrow a view of the planner. We see a program’s

budget as endogenous and depending on tradeoffs between welfare gains and implementation

costs. As the policy gets more complicated and granular, implementation costs increase. But

the welfare benefits of better targeting may exceed these cost increases; the social planner

wants a more precise policy as long as the marginal benefit exceeds its marginal cost. Mbakop

and Tabord-Meehan (2021) also consider a setting without hard restrictions on the policy

space, and propose to use penalized welfare maximization (PWM) to select the optimal

complexity to prevent the treatment assignment rule from being overfitted to the sample. Our

approach is similar in spirit, except that our penalization is based additionally on substantive

features of the policymaker’s objective.

To implement this idea, we follow Lakkaraju and Rudin (2017) to define the social
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planner’s objective (utility) as follows:

U(π) = g1(π) − λ2g2(π) − λ3g3(π) (4)

where

g1(π) = W (π) = E[πiΓi]

g2(π) =
p∑

j=1
cj1{X(j) used in π}

g3(π) = Complexity(π)

λ2, λ3 > 0

The first term is the welfare gain from implementing the policy π, as discussed in the

previous section. The second term captures the measurement cost for feature vector X(j) =

(X(j)
1 , ..., X(j)

n )′, and cj is the known cost of accessing the jth feature. The measurement cost

depends on whether the policymaker’s measurement plan sets 1{X(j) used in π} = 0 or 1 for

a given feature j.

If measurement costs can be reasonably specified in terms of a small number M of mea-

surement plan options, then optimization in terms of measurement depends on a manageable

number of discrete comparisons. For example, in our application policymakers chose between

(1) simply determining eligibility at the community level using pre-collected census data,

or conducting (2) minimal or (3) more detailed household surveys to determine household

eligibility for the PROGRESA program. These three options, each allowing for targeting

using more variables than the previous, had costs reported in Skoufias et al. (1999).

The last term reflects the cost of complexity. As the policy becomes more complex, the

social planner incurs greater costs. λ3 can be recovered from her stated or, using the strategy

we pursue in our empirical application, revealed preferences. The λs determines the relative

importance of the costs and benefits. The social planner wants to find the optimal π to solve
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the problem in equation (4). We propose a two-step method to solve this problem.

4 Algorithm

Our two-step policy-learning algorithm fits a low-dimensional interpretable policy (step 2)

using scores from a high-dimensional machine learning model fit to the sample data (step 1).

This algorithm can be applied to many existing models. The high-dimensional model is used

to estimate a doubly robust welfare gain score (Γ̂i) that characterizes the net welfare benefit

from assigning individual i to treatment, given covariates Xi. Our use of doubly robust scores

from step 1 draws on arguments from Chernozhukov et al. (2018) and Athey and Wager

(2021) and allows us to draw on existing results to bound welfare regret for the coarsened

policies derived in step 2. Existing machine learning models, such as generalized random

forests (Athey, Tibshirani, and Wager, 2019) or kernel-based support vector machines (Imai

and Ratkovic, 2013) can serve this role in the first step. In step 2, we search for the optimal

interpretable machine learning model based on the Γ̂i values to obtain a coarsened policy to

be implemented.

Specifically, we consider the following search strategy. For a sequence of policy spaces

{Πm
k }, where k indexes policy complexity level and m indexes a measurement plan, we search

for the optimal policy π̂∗
k,m satisfying:

π̂∗
k,m = arg max

π∈Πk,m

Wn(π) ≡ arg max
π∈Πk,m

Un(π).

Then, we go through all Πm
k and find the optimal policy π̂n and k∗ such that π̂n = π̂∗

k∗,m∗ and

(k∗, m∗) = arg max
k,m

Un(π̂∗
k,m) − Cn(k) −

√
k
n
. The terms Cn(k) and

√
k
n

are model penalization

terms for controlling generalization error from using sample-based estimates (Mbakop and

Tabord-Meehan, 2021; Bartlett, Boucheron, and Lugosi, 2002).

The complexity cost varies depending on the social planner’s choice of policy class (or,

alternatively, class of interpretable machine learning models. We use the terms synonymously).
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One example policy class consists of decision trees (Breiman, Friedman, Olshen, and Stone,

2017; Miller, 2019). Another consists of linear decision rules. A decision tree model maps

the covariate vector Xi into an action via a particular path from the root node to a leaf

node. Each split in the decision tree represents an “if-else” rule: “if covariate X(j) ≤ c,

then left-child; else, right-child.” All observations in leaf l will be assigned to the same

treatment arm. Following the decision tree, which is easy to visualize, one can see who is

eligible to receive treatment and why. Linear decision rules determine who should be assigned

to treatment on the basis of linear combinations of features. These can be interpreted as

“points” associated with each feature so that there is a threshold number of points such that

individuals with points above the threshold value will be treated (Kitagawa and Tetenov,

2018). As mentioned above, Levy (2006) highlights the transparency of the linear eligibility

rule in the PROGRESA program as being important to its legitimacy and sustainability.

In the tree-based policy case, the complexity can be defined as the number of splits in a

tree; in the linear decision rule case, the complexity can be defined as the number of features

incorporated.

Once the analyst has taken care to identify complexity costs in the same units as the

outcome (Mexican pesos, in our application), the complexity costs in the social planner’s

objective can be incorporated in ways that are equivalent to the complexity penalties used for

regularization in, e.g., decision trees model (Breiman et al., 2017) or regularized linear models

(Hastie, Tibshirani, Friedman, and Friedman, 2009). For example in a decision tree model

we may assign a cost to the number of “if-else” rules, which is the cost for an additional

split. In this case, a split would only be accepted if the welfare gains from more precise

targeting exceed the cost of the additional split. This is straightforward and natural: if there

are more “if-else” rules, it is harder for professionals to follow the tree (as with treatment

recommendations based on complex comorbitity and drug-drug interaction considerations).

Therefore, if we add one more “if-else” rule to the current policy, the new policy will only be

accepted if the additional rule creates a positive net benefit. Similarly, in a linear model the
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number of features used serves as the complexity measure. If there is one more feature, it

increases costs due to a more complex calculation and lower transparency.

The Cn(k) term is a penalty which accounts for overfitting and maintains good inferential

properties in generalizing from sample to population. In this paper, we follow Bartlett

et al. (2002) and use the negative maximal-discrepancy estimate as our penalty term. Other

penalty terms, including hold-out penalty, are also compatible with our assumptions. The

maximal-discrepancy for given policy class Πk is defined as sup
π∈Π

W (1)
n (π) − W (2)

n (π), where

the superscript (1) and (2) indicate the empirical welfare evaluated on the first half and

the second half of the sample, respectively. Intuitively, it captures the maximal welfare

difference if a policy is applied to two independent samples from the same distribution. In the

appendix, we extend to our weighted classification setting Bartlett et al. (2002)’s approach to

computing maximal discrepancy in binary classification by flipping the Γ̂i for first half of the

data and re-estimating a new policy within the same policy class. The new policy’s empirical

welfare will be one half of the maximal discrepancy. Bartlett et al. (2002) shows that the

maximal discrepancy approach has better performance in terms of error bounds compared to

hold-out sample estimation. The auxiliary
√

k
n

term ensures a rate at which the aggregate

penalty (Cn(k) −
√

k
n
) scales in k, which in turn is used when determining a bound on the

generalization error from using sample values to maximize population welfare (Mbakop and

Tabord-Meehan, 2021; Bartlett et al., 2002).

The algorithm is summarized as follows:
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Algorithm 1: Automatic Policy Coarsening via Maximal Discrepancy

1 Extract the set of covariates X = (X1, . . . , Xn) from the sample.

2 Estimate the doubly robust score Γ̂i for all i in the sample using a machine learning

model satisfying our assumptions.

3 for Πk,m from Π1,1 to ΠK,M do

4 Search for the optimal policy π̂k,m ∈ Πk,m using the elements of Xi available under

measurement plan m and the Γ̂i embedded in the estimated objective value

Un(π̂k,m), the sample counterpart of the objective in equation (4).

5 Set Γ̂∗
i = −Γ̂i when i ≤ n

2 and Γ̂∗
i = Γ̂i when i > n

2 .

6 Search for the optimal policy π̂′
k,m ∈ Πk using the elements of Xi available under

measurement plan m, using Γ̂∗
i in place of Γ̂i to obtain the estimated objective

value U∗
n(π̂′

k,m).

7 Obtain an objective measure

νπ̂,k,m = Un(π̂k,m) + 2U∗
n(π̂′

k,m) −
√

k
n

− λ2g2(π̂k,m) − λ3g3(π̂k,m).

8 Select the model with the highest objective measure νπ̂,k,m.

The detailed theoretical reasoning is provided in the next section.

5 Theory

In this section, we lay out the theoretical properties of Algorithm 1, focusing on how learning

improves with the experimental sample size. Our main results come in the form of regret

bounds on the difference between policymaker utility under the optimal policy and the utility

obtained from our algorithm. Across a variety of conditions, we find that the order of our

bounds matches that of bounds on welfare regret from the penalized and policy learning

literature whose algorithms do not consider implementation costs. The main message is

therefore that incorporating implementation costs in the optimal policy search does not

substantially degrade performance with respect to welfare regret.
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To set the stage for these results, recall that the social planner’s objective is given by:

U(π) = W (π) − λ2g2(π) − λ3g3(π)

= E[πiΓi] − λ2g2(π) − λ3g3(π).

We follow Mbakop and Tabord-Meehan (2021) and construct a sequence of nested policy

spaces Π1 ⊂ Π2 ⊂ · · · ⊂ Πk ⊂ · · · ⊂ Π, where π∗ ∈ Π. For example, the sequence could

be made up of decision trees with increasing depth indexed by k. For ease of exposition in

this section, we hold the measurement plan fixed along this sequence and suppress the m

subscript. The general case where there are multiple measurement plans under consideration

makes the sequence of policy spaces non-nested. As in Mbakop and Tabord-Meehan (2021)

our results can be extended to this case.

Within a given policy space Πk we have an optimal policy π∗
k which solves

sup
π∈Πk

E[πiΓi].

We can decompose the welfare regret arising from choosing a policy π̂k ∈ Πk in place of π∗ as

W (π∗) − W (π̂k) = W (π∗) − W (π∗
k)︸ ︷︷ ︸

approximation error

+ W (π∗
k) − W (π̂k)︸ ︷︷ ︸

estimation error

.

Following Mbakop and Tabord-Meehan (2021) and Bartlett et al. (2002) we refer to the first

term as the approximation error and the second term as estimation error. The approximation

error is an irreducible error coming from the complexity of Πk relative to π∗. The estimation

error comes from a combination of the choice of estimation algorithm and sampling error.

The fact that the policy spaces {Πk} are nested means the estimation error is non-decreasing

with respect to k. The approximation error is non-increasing with respect to k. Mbakop

and Tabord-Meehan (2021) proposes the penalized welfare maximization (PWM) method to

search for the optimal k, which balances the approximation error and the estimation error.
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For us, however, the social planner’s utility does not only consist of the welfare from

treatment, but also includes implementation costs. We perform an analogous decomposition

in our setting:

U(π∗) − U(π̂k) =U(π∗) − U(π∗
k) + U(π∗

k) − U(π̂k)

=W (π∗) − λ2g2(π∗) − λ3g3(π∗) − W (π∗
k) + λ2g2(π∗

k) + λ3g3(π∗
k)

+ W (π∗
k) − λ2g2(π∗

k) − λ3g3(π∗
k) − W (π̂k) + λ2g2(π̂k) + λ3g3(π̂k)

=W (π∗) − W (π∗
k) + (λ2g2(π∗

k) + λ3g3(π∗
k) − λ2g2(π∗) − λ3g3(π∗))

+ W (π∗
k) − W (π̂k). (5)

The last equality comes from the fact that πk, π∗
k ∈ Πk and follow the same measurement

plan so they have the same measurement and the complexity costs. Note that the practical

cost of π∗, λ2g2(π∗) + λ3g3(π∗) is a constant with respect to policy choice. The elements

highlighted in the decomposition (approximation error, implementation costs, and estimation

error) will play key roles in our bounding arguments.

Before we proceeding to our main results, we lay out the necessary assumptions. We

maintain assumptions 2 and 4 from Athey and Wager (2021), restated in our terms as

assumptions 5 and 6 in the appendix, which provide the necessary assumptions for the doubly

robust welfare scores. We also assume that each policy space Πk in the sequence has bounded

VC dimension.

For a given policy space Πk, we let

π̂k = arg max
π∈Πk

Wn(π) ≡ arg max
π∈Πk

Un(π).

The equivalence is due to the fact that for a fixed policy space and fixed measurement plan, the

practical costs are also fixed. We now introduce a penalization term Cn(k), which is intended

to account for the extent to which the in-sample welfare measure Wn(π̂) is upward-biased
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for the population welfare measure W (π̂) as a result of π̂k having overfitted Wn(·). Cn(k)

takes k as an argument because a policy’s ability to overfit is an increasing function of its

complexity. We will also refer to Cn(k) as a statistical complexity penalty, separate from

the substantive complexity cost in the planner’s objective function. Finally, we refer to the

difference Wn(π̂k) − W (π̂k) as the generalization error in welfare evaluation.

We require the following condition on Cn(k) which, intuitively, means that the the penalty

term must provide a good approximation to the generalization error.

Assumption 2 (Assumption 3.4 in Mbakop and Tabord-Meehan (2021)) Let P denote the

set of distributions satisfying assumptions 1, 5, and 6. There exist positive constants c0 and

c1 such that Cn(k) satisfies the following tail inequality for every n, k and for every ϵ > 0:

sup
P ∈P

Pn(Wn(π̂k) − W (π̂k) − Cn(k) > ϵ) ≤ c1e
−2c0nϵ2

.

Drawing on Bartlett et al. (2002)’s discussion of penalty terms for model selection in classifi-

cation problems, in appendix A.4 we show that our implementations of hold-out and maximal

discrepancy penalties satisfy assumption 2.

We now state our first theoretical result.

Theorem 5.1 For every P satisfying assumptions 1, 5, and 6 and penalty function Cn(k)

satisfying assumption 2, there exist constants ∆ and c0 such that:

EPn [U(π∗) − U(π̂n)] ≤inf
k

EPn [Cn(k)] + (W (π∗) − W (π∗
k)) (6)

+ (λ2g2(π∗
k) + λ3g3(π∗

k) − λ2g2(π∗) − λ3g3(π∗)) +
√

k

n

+
√

log(∆e)
2c0n

where π̂n = π̂k∗ and k∗ = arg max
k

Un(π̂k) − Cn(k) −
√

k
n
.

Proof: see appendix A.1.

EPn [·] in the expression above refers to the expectation of a quantity over repeated draws of
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samples of size n. The infimum over k between 1 and K in the bound is the result of our

algorithm’s searching across the policy spaces in {Πk} and selecting the policy with the lowest

error. Our algorithm thus effectively trades off the three terms in the utility decomposition

in equation (5) (approximation error, estimation error, and implementation cost) against one

another. The theorem is analogous to Theorem 3.1 in Mbakop and Tabord-Meehan (2021),

with the addition of implementation costs, and is our first theoretical result showing that our

algorithm’s incorporation of implementation costs does not result in fundamentally different

regret properties compared to the penalized and policy learning literature.

We now discuss several ways to obtain a uniform bound for the right hand side of equation

(6). For this we require that Cn(k) satisfies a modified version of Assumption 3.5 in Mbakop

and Tabord-Meehan (2021):

Assumption 3 There exists a positive constant C1 such that for every n, Cn(k) satisfies

sup
P ∈P

lim sup
n→∞

EPn [Cn(k)] ≤ C1

√
V C(Πk)

n
,

where V C(Πk) is the VC-dimension of Πk.

The P ∈ P refer to possible states of the world (Manski, 2004). In the appendix we show

that our implementation of hold-out and maximal discrepancy penalties satisfy assumption 3.

With this result we are able invoke the following corollary, analogous to Corollary 3.2 in

Mbakop and Tabord-Meehan (2021).

Corollary 1 Suppose assumptions 1, 2, 5, and 6 hold and that Π = ΠK for some finite K.

Then

lim sup
n→∞

EPn [U(π∗) − U(π̂n)] ≤lim sup
n→∞

inf
1≤k≤K

EPn

C1

√
V C(Πk)

n
+ (W (π∗) − W (π∗

k))


+(λ2g2(π∗
k) + λ3g3(π∗

k) − λ2g2(π∗) − λ3g3(π∗)) +
√

k

n

+
√

log(∆e)
2c0n

.
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This result is straightforward but illustrates the link between Athey and Wager (2021)’s

welfare regret bound and the bound on the difference between optimal policymaker utility

and that achieved by our algorithm. When k = K, the approximation error is equal to zero

and resulting bound is E
[
C1

√
V C(ΠK)

n

]
, which appears in Athey and Wager (2021)’s welfare

regret bound for policies learned from experimental and observational studies, plus additional

fixed terms and terms appearing in Mbakop and Tabord-Meehan (2021) generated by the

search over policy spaces. If π∗ ∈ Πk0 for some known k0, then W (π∗) − W (π∗
k0) = 0. This

gives us have another bound similar to one discussed in Mbakop and Tabord-Meehan (2021).

Corollary 2 Suppose assumptions 1, 2, 5, and 6 hold, then

lim sup
n→∞

EPn [U(π∗) − U(π̂n)]

≤ lim sup
n→∞

C1

√
V C(Πk)

n
+ (λ2g2(π∗

k) + λ3g3(π∗
k) − λ2g2(π∗) − λ3g3(π∗)) +

√
k

n
+
√

log(K∆e)
2c0n

.

Finally we provide a bound which does not rely on knowledge of the approximation error

W (π∗) − W (π∗
k), or conditions under which it is equal to zero. To do so, we must choose

Cn(k) and derive a uniform bound on W (π∗) − W (π∗
k). As discussed above, both the hold-out

penalty and the maximal discrepancy penalty satisfy assumption 2 and are thus appropriate

for our purposes. For the uniform bound on the approximation error W (π∗) − W (π∗
k), we

conduct a decomposition of EPn [U(π∗) − U(π̂k)].

EPn [U(π∗) − U(π̂k)] = EPn [U(π∗) − U(π̂∗) + U(π̂∗) − U(π̂k)]

= EPn [(W (π∗) − W (π̂∗)︸ ︷︷ ︸
A

) + (W (π̂∗) − W (π̂k)︸ ︷︷ ︸
B

)]

+ λ2g2(πk) + λ3g3(πk) − λ2g2(π∗) − λ3g3(π∗)

where π̂∗ is the optimal in-sample policy in Π. We further make an assumption on the

ultimate policy space Π, following Athey and Wager (2021).

20



Assumption 4 We assume there are constants 0 < β < min(ζm, ζg) and N∗ ≥ 1 such that

the VC-dimension of policy class Π is bounded: V C(Π) ≤ nβ for all n ≥ N∗.

This assumption guarantees a bound for term A, the regret from using π̂∗ in place of π∗

which has the form A ≤ C
√

V C(Π)
n

. Because both π̂∗ and π∗ are elements of Π, and π̂∗ is

the empirical maximizer, we can invoke theorem 1 in Athey and Wager (2021) when further

maintaining assumption 8. Term B is bounded by the weighted misclassification error of π̂k

with respect to π̂∗. To see this, note that

π̂∗(Xi)Γi − π̂k(Xi)Γi =



|Γi| if π̂k = 1, π̂∗ = 0 and π∗ = 0

|Γi| if π̂k = 0, π̂∗ = 1 and π∗ = 1

−|Γi| if π̂k = 1, π̂∗ = 0 and π∗ = 1

−|Γi| if π̂k = 0, π̂∗ = 1 and π∗ = 0

0 otherwise

Weighting the misclassification error by |Γi|, the absolute value of the doubly robust score,

we have that 1{π̂k(Xi) ̸= π̂∗(Xi)}|Γi| = |Γi| when they disagree. Therefore, we have

EPn [1{π̂k(Xi) ̸= π̂∗(Xi)}|Γi|] ≥ EPn [W (π̂∗) − W (π̂k)].

Lemma 4 in Athey and Wager (2021) shows that we can use Γ̂i in place of Γi and the difference

between EPn [1{π̂k(Xi) ̸= π̂∗(Xi)}|Γi|] and EPn [1{π̂k(Xi) ̸= π̂∗(Xi)}|Γ̂i|] is bounded by an

O
(√

V C(Πk)n
n1+β

)
term.

Results from the statistical learning literature lead to a general result bounding mis-

classification error.

Lemma 5.1 For binary classification algorithm class Πk with finite VC-dimension V C(Πk)

and the target being π∗, for any δ > 0, with probability at least 1 − δ, the following holds for
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all πk ∈ ΠK:

lim sup
n→∞

L(πk) ≤ L̂(πk) + 2ζ

√
V C(Π) log en

V C(Π)

n
+
√

κ

n
log

(2
δ

)

where L̂(πk) = En[1{πk(Xi) ̸= π∗(Xi)}|Γ̂i|]and L(πk) = EPn [L̂(πk)] , and ζ and κ are

constants.

Proof: see appendix A.2.

This result combined with the bound on term A provides a bound for E[U(π∗) − U(π̂k)]

for given k.

Theorem 5.2 Suppose assumptions 1, 2, 4, 5, and 6 hold and that Π = ΠK for some finite

K, we have with probability 1 − δ

lim sup
n→∞

EPn [U(π∗) − U(π̂n)] ≤ lim sup
n→∞

inf
1≤k≤K

L̂(π̂k) + 2ζ

√
V C(Π) log en

V C(Π)

n
+
√

κ

n
log

(2
δ

)
+ C

√
V C(Π)

n

+ (λ2g2(π∗
k) + λ3g3(π∗

k) − λ2g2(π∗) − λ3g3(π∗)) +
√

k

n


where π̂n is given in the statement of theorem 5.1.

Proof: see appendix A.3.

Note that when V C(Π) is large, the value and the convergence rate of the bound is governed

by C
√

V C(Π)
n

. It shows that the regret for our practical policy has the same order as if we were

searching for the optimal policy only in the largest policy space using the method introduced

in Athey and Wager (2021).

Our results altogether imply that: (1) our algorithm yields a policy with the same

convergence rate as existing EWM methods when the planner has information on the optimal

policy class (corollaries 1 and 2); (2) without such information and when the complexity of

the optimal policy does not grow too fast with the sample size, the welfare of the practical

policy is still bounded and achieves regret of the same order as the most complex policy space

considered.
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6 Application

We now illustrate the value of our coarsened policy learning algorithm by applying it in

the context of Mexico’s PROGRESA conditional cash transfer program. We will show that

our algorithm can appropriately balance the trade-off between policy benefits and the social

planner’s implementation costs.

From 1997 to 2019 PROGRESA2 was the centerpiece of the Mexican government’s policy

agenda aimed at poverty alleviation and developing the human capital of poor households.

PROGRESA worked to alleviate current and future poverty levels through cash transfers

mainly given to mothers in households. The largest portion of the cash transfers were

conditioned on children’s regular school attendance. Compared to previous poverty alleviation

programs in Mexico, PROGRESA was novel in targeting eligibility at the household level and

delivering benefits electronically in cash rather than in-kind, with the intention of providing

resources directly to the poor households who would most benefit from the program (Skoufias,

2005).

PROGRESA was rolled out as a randomized controlled trial, in which 504 villages were

partitioned into treatment and control groups, with treatment communities providing benefits

to eligible households satisfying the prescribed conditions. This experimental design allows

for the identification of the welfare effects of the program. We use the experimental data to

derive optimal targeting policies.

6.1 Welfare

We use Gechter et al. (2018)’s (henceforth GSDP) welfare outcome as our Yi. GSDP’s

outcome allows for an evaluation of the redistributive benefits of PROGRESA by comparing

1) the upside to transfer recipients against 2) the downside to those taxed to pay for the

transfers. To arrive at 1), the net upside for transfer recipients, GSDP’s welfare outcome

compares the cash benefits with the cost of complying with the condition that a child be
2Later renamed Oportunidades and then Prospera under subsequent central government administrations.
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enrolled in school. This cost could be explicit, like when the child would otherwise work for

wages, or implicit, when the child would help with care of younger siblings or on the family

farm. Since the child’s counterfactual use of time when enrolled is unknown, GSDP take a

conservative approach to valuing program benefits and assume families who would not enroll

a child without PROGRESA need the entirety of the transfer to compensate them for the

child’s alternative use of time. The result is that the net benefit from the cash only accrues to

households who would enroll children even without the program. For 2), GSDP consider the

transfer program to be financed by a uniform income tax. The per-child cost is the average

size of the grant provided to children who enroll when eligible for PROGRESA, net of any

savings to the government provided by the higher lifetime income tax revenue of individuals

who complete an additional year of education because of PROGRESA.

Putting 1) and 2) together, the motive for redistributing from taxpayers to program

recipients arises because increments/decrements to each’s income are valued according to a

function with constant elasticity of substitution in income across individuals in the population

(Atkinson, 1970). The function has diminishing marginal returns to each individual’s income

(governed by the parameter σ) so the overall value of the function increases when income

is transferred from the average taxpayer to the poor. GSDP identify σ by assuming the

break-even point of social welfare occurs at the Mexican poverty line, as intended by the

program designers (Skoufias et al., 1999). We use GSDP’s estimated value of 0.33. Income

taxation is an imperfect instrument for this transfer, however, since some taxpayers will reduce

the amount of labor they supply to the market in response to a lower amount of takehome

pay. By moving taxpayers away from their unconstrained optimal behavior, taxation imposes

an additional cost on them which economists refer to as the deadweight loss of taxation.

GSDP use the benchmark figure of a 30% additional cost to taxpayers beyond the average

value of transfers claimed (Finkelstein and Hendren, 2020).

Taking a first order approximation to the redistribution, child i’s welfare contribution if
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the targeting policy assigns them to treatment (eligibility for PROGRESA) is

g(edi, malei)
(

N̄

Ni

)σ

enrolli(0)︸ ︷︷ ︸
welfare benefit

(7)

− 1.3Ω [g(edi, malei)enrolli(1) − T (enrolli(1), agei, edi, malei) + T (enrolli(0), agei, edi, malei)]︸ ︷︷ ︸
cost net of savings

.

g(ed, male) is the size of the grant a child having completed ed years of education is entitled

to depending on whether the male indicator is zero or one. N̄ is the average per capita

income earned by adults across Mexican households, Ni is i’s parents’ income. Ω is the

average of
(

N̄
Ni

)σ
across Mexican households (taxpayers). T (enroll, age, ed, male) measures

the present discounted value of i’s lifetime income tax contributions based on whether she

enrolls for an additional year of school given her age, years of education already completed,

and gender. Finally enrolli(1) and enrolli(0) represent i’s potential enrollment with and

without eligibility for PROGRESA, respectively. i’s welfare contribution is normalized to

zero if the targeting policy does not assign her to receive treatment.

Equation (7) translates to defining the outcome of interest for the application as

Yi =1.3ΩDi [T (enrolli, agei, edi, malei) − g(edi, malei)enrolli]

+ (1 − Di)[g(edi, malei)
(

N̄

Ni

)σ

enrolli − 1.3ΩT (enrolli, agei, edi, malei)].

Treatment effects on this outcome can be interpreted as equivalent to per-eligible-child

increases in the adult income of an average Mexican household since for such a household(
N̄
Ni

)σ
= 1.

6.2 Identifying the Complexity Cost

The costs of complexity, while acknowledged as important in the ways stated above, were not

numerically articulated by PROGRESA’s designers. We therefore use a revealed preference
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argument to identify λ3 in the policymaker’s objective function specified in equation (4). We

model PROGRESA’s designers as choosing between the following three candidate policies.

• M1: A simple linear treatment rule with PROGRESA’s locality poverty index as the

only feature. The poverty index is costless for the policymaker to obtain since it was

derived from census and administrative data collected by the government for other

reasons. To construct the index, PROGRESA used community information such as

access to schools, share of illiterate adults, share of dwellings missing key assets, number

of occupants per room, and the share of the population working in agriculture. Program

designers then inputted the community information to a Principal Components Analysis

(PCA) model, extracting the first principle component as the poverty index.

• M2: A linear treatment rule using the poverty index, the costly variables ultimately

used for eligibility determination, and their interaction with the poverty index. The

variables used to determine eligibility are described in Coady et al. (2013) and include

household and individual level characteristics such as home amenity possession and

children’s ages. We list all of these variables in appendix B. The interaction mimics

PROGRESA’s two-stage eligibility rule, which first classified a locality as poor or non-

poor according to the poverty index, then used individual characteristics to determine

eligibility in poor localities.

• M3: A linear treatment rule using the same variables as M2 but including the interac-

tions of all variables with “household head without education”, which has been shown

by GSDP to be associated with treatment effect heterogeneity.

The three treatment rules differ in the welfare gains they provide, their measurement cost,

and their complexity cost. In terms of measurement cost, Skoufias et al. (1999) report that

the variables needed to determine eligibility required administration of a minimal household

survey costing an average of 60 Mexican pesos per household. We convert this to a per-child
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measure by dividing by the average number of children per household in the PROGRESA

experimental sample, yielding a measurement cost of 13.69 pesos for this set of costly variables.

PROGRESA’s designers finally chose M2 as their eligibility rule so we know M2 ⪰ M1

and M2 ⪰ M3. This means that

Wn(M1) − λ3g3(M1) ≤Wn(M2) − 13.69 − λ3g3(M2) (8)

Wn(M3) − λ3g3(M3) ≤Wn(M2) − λ3g3(M2). (9)

The measurement cost features in the first line because we consider the poverty index to be

costless since it was produced from independently-collected census data. Both M2 and M3,

in contrast, involve the costly variables PROGRESA actually used to determine eligibility.

By our construction, we have g3(M3) > g3(M2) > g3(M1). We set the g3(·) function

to measure the number of additive terms in the linear treatment rules. Hence, we have

g3(M2) − g3(M1) = 24 and g3(M3) − g3(M2) = 12. By estimating the welfare associated

with each method, the two inequalities from (8) involve only λ3, and together bound the

complexity cost.

To arrive at the welfare estimate for M1 we need to consider the welfare associated with

treating individuals in selected communities who were not eligible for PROGRESA in the

initial program evaluation. To do so, we follow Skoufias et al. (1999)’s approach assuming a)

the Mexican government’s objective during the design phase did not involve any treatment

effects and b) that enrollment among all treated 8 - 18 year olds would be universal so that

Equation (7) can be rewritten as

g(edi, malei)
(

N̄

Ni

)σ

enrolli(0)

− 1.3Ω [g(edi, malei) − T (1, agei, edi, malei) + T (enrolli(0), agei, edi, malei)] .

Since the authors of Skoufias et al. (1999) were involved in the planning phases of the
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PROGRESA evaluation, we consider this a reasonable approximation to the PROGRESA

planners’ thinking prior to receiving the experimental results, justifying the revealed preference

inequalities above.

Inserting our estimates, Wn(M1), Wn(M2), and Wn(M3) into inequalities (8), we obtain

λ3(g3(M2) − g3(M1)) ≤ 15.49

λ3(g3(M3) − g3(M2)) ≥ 0.02.

This yields our final bounds on λ3, 0.002 ≤ λ3 ≤ 0.645. We take the midpoint - 0.324 pesos -

as our complexity cost.

6.3 Measurement Costs

Moving to the design of our policies which do make use of the results of the PROGRESA

evaluation, we consider three possible measurement plans:

1. A plan using only the costless locality poverty index,

2. A plan using the poverty index and additionally collecting the variables used by

PROGRESA to determine eligibility,

3. A plan collecting the same household survey used in the PROGRESA evaluation,

now in the broader population. The evaluation survey went well beyond the minimal

survey needed to determine PROGRESA eligibility and gives the planner access to

an additional set of variables which can be used for targeting. Skoufias et al. (1999)

report that the cost of running the full household survey is 170 pesos per household

on average, so an increase of 23.679 pesos relative to the eligibility-only survey when

divided by average number of children per household.

We note here that only eligible individuals (according to the rule PROGRESA actually

used) could receive transfers in PROGRESA’s experimental evaluation. Therefore we can
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only evaluate treatment effect heterogeneity in the PROGRESA experiment and perform

treatment assignment for subsets of this group. This is always the case with statistical

treatment assignment: the thought experiments entertained in the literature are necessarily

about rendering ineligible some members of a target population, never expanding eligibility.

So we consider any treatment assignment rule except one that withholds treatment from

everyone to be using either the second or third measurement plan, since it involves selecting

subsets of the original eligible children for treatment and therefore must pay the cost of

collecting the variables needed to employ PROGRESA’s original eligibility rule.

6.4 Results

The first step of our algorithm is to use a high dimensional model to estimate the doubly-

robust welfare scores and provide an initial policy. We estimate the welfare treatment effect

Γ̂i scores using the generalized random forest algorithm (grf ) developed by Athey et al.

(2019). We include all variables in the third measurement plan in estimation. The variable

importance function for the causal_forest function in the grf package shows that the main

factors affecting the individual Γ̂i scores are children’s years of education, age, the locality

poverty index (indice), and household head’s age. As shown in Figure 1, we find that the

poverty index can provide as much information as children’s age and education level do.

To get a sense of the variation in the estimated welfare scores, we show their distribution

and estimated conditional mean over children’s age and the locality poverty index in the

left and right panels of Figure 2. Figure 2 shows that although both age and the locality

poverty index both explain treatment effect heterogeneity, age alone may not provide enough

information to determine treatment assignment because the average score conditional on age

always exceeds zero. In contrast, the mean welfare score conditional on locality poverty index

does dip below zero for individuals in the richest communities included in the PROGRESA

experiment.

For step 2, we consider a variety of linear and tree-based policy rules as our coarsening
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Figure 1: Variable Importance: Main Factors Affecting PROGRESA Treatment Effects

Figure 2: Treatment Effect Heterogeneity and Policy Assignment

Panel (a) Panel (b)

strategy. Linear treatment rules, as per Kitagawa and Tetenov (2018), have the following

form:

Πlinear ≡ {{x ∈ Rp : β0 + x′
(k)β(k) > 0} : (β0, β(k)) ∈ Rk+1 and k ≤ p},

where x(k) ∈ Rk is the subvector of terms in X used in the scoring rule. This could include

any covariates in Xcostless and Xcostly. We first consider a policy including the variables from

measurement plan 3, and their interaction with the poverty index to mimic PROGRESA’s

original two-stage eligibility rule. This policy represents the case where the social planner

makes a policy without considering measurement or complexity costs. Then, we present a
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coarsened policy using only the variables available from measurement plan 2.

Table 1 details the welfare impact of each policy, the estimated proportion of individuals

assigned to treatment, the practical costs incurred under each rule, as well as the social

planner’s utility, summing the welfare benefits and practical costs. We also report the welfare

of treat-everyone and treat-no-one policies as benchmarks in the first two rows. When the

social planner decides to treat everyone, retaining PROGRESA’s original eligibility criteria,

the per-eligible-child increment to social welfare is equivalent to a 492.376 pesos (53.87

contemporary USD) increase in the annual adult income of an average Mexican household at

the time. Treating all those originally determined to be eligible for PROGRESA requires the

use of measurement plan 2. Subtracting the cost of this measurement plan, the treat-all policy

yields the final social planner utility of 492.376 − 13.69 = 478.686. The treat-no-one policy,

the only policy we consider which does not require a household survey, has no measurement

cost but also yields zero welfare.

Row 3 in Table 1 presents the results of using a linear treatment rule taking advantage of

the full list of covariates in plan 3. This policy uses all available information and therefore

should target the population relatively (in the class of linear rules) precisely. It assigns

treatment to 94.9% of the originally-eligible population, and has high welfare per assigned

child: 497.271 pesos. However, using all the information from the full PROGRESA evaluation

means incurring additional measurement costs along with additional complexity costs, which

ends up with the total social planner’s utility being 445.97 pesos per eligible child. In

contrast, row 4 of the table shows results from a linear treatment rule using only the variables

from measurement plan 2. Here the social planner may lose some precision in targeting by

using only the minimal set of variables needed to determine eligibility under PROGRESA’s

original targeting scheme. The policy suggests that we should assign treatment to 96.6%

of originally-eligible children and its per-assigned-child welfare is a lower 492.414 pesos.

However, the social planner does not pay the additional measurement cost, which leads to

the total utility being 470.624 pesos including complexity costs. The comparison shows that
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the additional information available when using measurement plan 3 does modestly improve

targeting precision but ultimately reduces the planner’s objective. In fact the treat-all policy,

a linear treatment rule with zero terms, achieves the highest social planner utility.

We next consider a set of classification tree-based policies:

Πtree ≡ {{x ∈ Rp : µ(x; T(k)) = 1} : k ≤ D(P )},

where k is the tree depth, with maximum depth D(P ) that depends on the population covariate

distribution, and µ(x; T(k)) is the value that a k-depth classification tree T(k) returns for

input value x. First, we implement a classification-tree-based algorithm without considering

measurement or complexity costs. The results are shown in rows 5 and 6 of Table 1. Row

5 uses all variables available under measurement plan 3. It allocates treatment to 78.3%

of originally-eligible children and achieves the highest welfare among policies we consider:

554.257 pesos per assigned child. After subtracting measurement and complexity costs from

welfare, the planner’s utility under this policy is 501.336 pesos. The tree policy using only

variables available under measurement plan 2, shown in row 6 of the table, has lower policy

maker utility at 484.571 pesos per assigned child. In tree-based policies which do not take into

account implementation costs, the benefits of undertaking the full PROGRESA evaluation

survey rather than the minimal eligibility survey outweigh the costs.

The tree using variables from measurement plan 3 grown without concern for implemen-

tation costs (from Table 1 row 5) is presented in Figure 3. The policy has a visibly complex

structure. We now proceed to including implementation costs in the policy search to obtain

a coarsened policy, as proposed in this paper.

We incorporate complexity costs by increasing the complexity parameter of the tree-search

algorithm. The complexity parameter in tree-search algorithms such as rpart (Therneau and

Atkinson, 2022) is used to prune and restrict the size of the tree. It prevents further splitting

unless the percent improvement provided by adding a split to the tree is larger than the
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Figure 3: Tree-based Policy without Considering Implementation Costs
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value of the complexity parameter. Because we adopt a weighted-classification algorithm,

where the weight is the peso-valued individual welfare treatment effect estimate Γ̂i, the

classification error improvement also has a monetary value. Therefore, we add the value of

the complexity cost, 0.324 pesos, divided by 106.279, the initial weighted classification error,

to arrive at the percent improvement adding a split to the policy must provide to exceed

the substantive complexity cost. We then add this figure to the cross-validated statistical

complexity parameter.

Figure 4 shows the coarsened tree after considering both measurement and complexity

costs, with results detailed in row 6 of Table 1. The coarsened tree allocates treatment to

79.4% of originally-eligible children. The policy uses variables exclusive to measurement plan

3 and therefore incurs the maximum measurement cost. Because we use a larger complexity

parameter, the tree is simpler and the planner pays a lower total complexity cost. The

welfare value attained by this policy, 550.298 pesos per assigned child, is lower than that

associated with the tree grown with only a statistical complexity penalty due to a loss of
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targeting precision. However, our coarsened tree achieves higher total utility (505.477 pesos

per assigned child), after taking into account complexity costs. We visualize the coarsened

policy in Figure 4 below.

Figure 4: Coarsened Tree for Policy Assignment
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As a social planner, this result indicates that at least for PROGRESA, gathering more

information is helpful in the case of a tree-based policy. Although collecting information

implies paying extra measurement costs, it helps for designing a more precise policy which

brings more social welfare. However, such gains were not attained for a linear treatment rule.

Table 1: Estimated Welfare Gains

Outcome: Adjusted Net Welfare
Policy Rule Share of population Welfare Measurement Number of selected Complexity Total

being treated cost plan 3 variables ̸∈ plan 2 cost planner utility
Treat All Policy 1 492.376 13.69 0 0 478.686
Treat No-one Policy 0 0 0 0 0 0
Linear Treatment Rule with Full set of Variables 0.949 497.271 37.369 9 13.932 445.97
Linear Treatment Rule with Only Original Eligibility Variables 0.966 492.414 13.69 0 8.1 470.624
Tree with Full set of Variables 0.783 554.257 37.369 4 15.552 501.336
Tree with with Only Original Eligibility Variables 0.812 512.517 13.69 0 14.256 484.571
Tree with Cost Terms 0.794 550.298 37.369 4 7.452 505.477

Notes: The welfare is evaluated on a separate test set, net of measurement and complexity cost.
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7 Conclusion

The expansion of large-scale randomized experiments brings opportunities for practitioners

and researchers to analyze and design better policies. With individual-level data, one can

design an individualized policy to maximize social welfare rather than a uniform policy for the

entire population. However, any policy that tries to use targeting to increase social welfare

also comes with implementation costs. The cost to a social planner consists of the cost of the

treatment (e.g. the cash transfer given to individual households), cost of gathering data, and

cost of complexity.

An unrestricted individualized policy can be very complex and require detailed, costly-

to-acquire data. The previous literature in statistical policy design addresses the issue by

constraining the policy space according to a fixed budget constraint (Kitagawa and Tetenov,

2018; Athey and Wager, 2021), or estimated budget constraint (Sun, 2021) which holds

asymptotically. In this paper, we proposed a method with a flexible cost-benefit trade-off

incorporating costs for measurement and complexity. Our aim in this paper has been threefold:

(1) to endogenize policy complexity to trade-offs between gains to recipients versus costs of

implementation, (2) to establish how learning improves with increasing experimental sample

size even with this flexibility regarding the policy class, and (3) to demonstrate methods

for determining implementation costs and using a cost-sensitive algorithm for learning an

optimal policy.

We proposed a two-step algorithm to optimally coarsen a high-dimensional policy to

account for practical costs. We showed that the algorithm provides a treatment regime

with a regret bound that tightens in available experimental information. The result is a

“practical” treatment policy that, by construction, trades potential treatment effect gains

from highly granular targeting for gains in terms of practical implementation. We showed

the policy selected by the proposed algorithm is sensitive to the policy class (e.g., linear

versus tree-based policy rules) and the trade-off between welfare gains for recipients and

implementation costs.
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A Appendix

Technical Assumptions

Throughout our paper, we maintain several assumptions from Athey and Wager (2021). We

provide the assumptions we require here.

Assumption 5 (Assumption 2 in Athey and Wager, 2021) In the setting of equation (2),

assume that second moments are controlled as En[m2
n(Xi, Di)], En[(mn(Xi, 1)−mn(Xi, 0))2] <

∞ and En[e2
n(Xi)] < ∞ for all n = 1, 2, . . . , and that we have access to uniformly consistent

estimators of these nuisance components,

sup
x,d

(|m̂n(x, d) − mn(x, d)|), sup
x

(|(m̂n(x, 1) − m̂n(x, 0)) − (mn(x, 1) − mn(x, 0))|) p→ 0,

sup
x

(|ên(x) − en(x)|) p→ 0.

The L2 errors of each component decay as follows. For some 0 < ζm, ζg < 1 with ζm + ζg ≥ 1

and some a(n) → 0, where (Xi, Di) is taken to be an independent test example drawn from

the same distribution as the training data

E[(m̂n(Xi, Di) − mn(Xi, Di))2], E[((m̂n(Xi, 1) − m̂n(Xi, 0)) − (mn(Xi, 1) − mn(Xi, 0))2] ≤ a(n)
nζm

,

E[(ê(Xi) − en(Xi)2] ≤ a(n)
nζg

.

The subscript n in functions like mn(x, d) = En[Yi(d)|Xi = x] allows problem-specific quanti-

ties to depend on the sample size.

Assumption 6 (Assumption 4 in Athey and Wager, 2021) There is an η > 0 such that

η ≤ en(x) ≤ 1 − η for all x,n.

Assumption 7 (Assumption in Lemma 2 of Athey and Wager, 2021) The true influence

scores Γi are drawn from a sequence of uniformly sub-Gaussian distribution with variance
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bounded from below,

Pn[|Γi| > t] ≤ Cνe−νt2
, for all t > 0, V arn[Γi|Xi = x] ≥ s2

for some constants Cν , ν, s > 0 and for all n.

Assumption 8 (Assumption in theorem 1 of Athey and Wager, 2021) The irreducible noise

ϵi = Yi − m(Xi, Di) is both uniformly sub-Gaussian conditionally on Xi and Di and has

second moments uniformly bounded from below, V ar(ϵi|Xi = x, Di = d) ≥ s2.

A.1 Proof for theorem 5.1

The proof closely follows the proof of Theorem 3.1 in Mbakop and Tabord-Meehan (2021).

Define Rn,k(π) = Un(π) − Cn(k) −
√

k
n
. By our previous construction, we have k∗ =

arg max
k

Rn,k(π̂k).

For every k, we can write

U(π∗) − U(π̂n) = (U(π∗) − U(π∗
k)) + (U(π∗

k) − U(π̂n)).

We also have that

U(π∗
k) − U(π̂n) = (U(π∗

k) − Rn,k∗(π̂n)) + (Rn,k∗(π̂n) − U(π̂n)).

By the definition of Rn,k∗ , we know that Rn,k∗(π̂) ≥ Rn,k(π̂k) for all k. Therefore we have

that

U(π∗
k) − Rn,k∗(π̂n) ≤ U(π∗

k) − Rn,k(π̂k)

= U(π∗
k) − Un(π̂k) + Cn(k) +

√
k

n
(10)

= W (π∗
k) − Wn(π̂k) + Cn(k) +

√
k

n
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Fix δ > 0, and choose some π̃k ∈ Πk such that W (π̃k) + δ ≥ W (π∗
k). We have

W (π∗
k) − Wn(π̂k) + Cn(k) +

√
k

n
≤ W (π̃k) + δ − Wn(π̂k) + Cn(k) +

√
k

n
.

Taking expectations and letting δ go to zero gives us

EPn [U(π∗
k) − Rn,k∗(π̂n)] ≤ EPn [Cn(k)] +

√
k

n
.

Now we look at the Rn,k∗(π̂n) − U(π̂n) term. Note that

Pn(Rn,k∗(π̂n) − U(π̂n)) > ϵ) ≤ Pn

(
sup

k
(Rn,k(π̂k) − U(π̂k)) > ϵ

)
.

By Boole’s inequality, we have that:

Pn

(
sup

k
(Rn,k(π̂k) − U(π̂k)) > ϵ

)
≤
∑

k

Pn(Rn,k(π̂k) − U(π̂k) > ϵ).

Combining the definition of Rn,k and assumption 2, we have

∑
k

Pn(Rn,k(π̂k) − U(π̂k) > ϵ) =
∑

k

Pn

Un(π̂k) − U(π̂k) − Cn(k) > ϵ +
√

k

n


≤
∑

k

c1e
−2c0n(ϵ+

√
k
n

)2 ≤ e−2c0nϵ2 ∑
k

c1e
−2kc0

We therefore have Pn(Rn,k∗(π̂n) − U(π̂n) > ϵ) ≤ ∆e−2c0nϵ2 by setting ∆ = ∑
k c1e

−2kc0 < ∞.

Following a standard integration argument (see Problem 12.1 in Devroye, Gyorfi, and Lugosi

(1996)), we have EPn [Rn,k∗(π̂n) − U(π̂n)] ≤
√

log(∆e)
2c0n

.
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Combining these bounds gives us that

EPn [U(π∗) − U(π̂n)] ≤ EPn [Cn(k)] + U(π∗) − U(π∗
k) +

√
log(∆e)

2c0n
+
√

k

n

= EPn [Cn(k)] + W (π∗) − W (π∗
k) +

√
log(∆e)

2c0n
+
√

k

n

+ (λ2g2(π∗
k) + λ3g3(π∗

k) − λ2g2(π∗) − λ3g3(π∗))

for every k, and the result follows.

A.2 Proof for lemma 5.1

First, we define Rademacher complexity. Similar to VC-dimension, it provides a measure of

complexity of a function space.

Definition 1 (Rademacher Complexity (Mohri, Rostamizadeh, and Talwalkar, 2018))

Let σi be independent Rademacher random variables, each of which which takes a value in

{−1, +1} with 1
2 probability.

We define the empirical Rademacher Complexity as Rn(Π) = Eσ

[
sup
π∈Π

{ 1
n

∑n
i=1 σi1{πi ̸= Ri}}

]
,

where Ri = 1{Γi ≥ 0}. The Rademacher Complexity is the expectation of the empirical

Rademacher Complexity over all samples of size n according to the same distribution:

R(Π) = EPn [Rn(Π)].

To see why Rademacher complexity is a natural complexity measure, note that Rn(Π)

characterizes the maximum in-sample classification accuracy on randomly generated labels σi

over classifiers π ∈ Π; thus, Rn(Π) measures how much we can overfit to random coin flips

using Π.

By introducing Rademacher complexity, we are able to link the policy to the classification

loss function. For any population loss function L(π, R), we have the inequality

L(π, R) ≤ L̂(π, R) + sup
π

{L(π, R) − L̂(π, R)}
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where L̂ is the loss evaluated at given sample. In our case, L is the weighted classification

error. That is, we have L̂(π, R) = 1
n

∑n
i=1(Γi1{π(Xi) ̸= Ri}) and L(π, R) = EPn [L̂(π, R)].

Note that the sup part in the function above changes by at most Γi/n when changing one

element of our sample, and Γi is a sub-Gaussian variable, so the condition of theorem 2.6.2

in Vershynin (2018) satisfied. It gives us that with probability 1 − δ

sup
π

{L(π, R) − L̂(π, R)} ≤ EPn

[
sup

π
(L(π, R) − L̂(π, R))

]
+
√

κ

n
log

(2
δ

)

where κ is a constant determined by the Cν and ν.

The symmetrization inequality from Bartlett, Bousquet, and Mendelson (2005) shows

that EPn

[
supπ{L(π, R) − L̂(π, R)}

]
≤ EPnRn(L(Π)), the Rademacher complexity of the loss

function. Therefore, we have the following lemma:

Lemma A.1 For loss function L defined as weighted binary classification loss evaluated at

the population weighted by scores which are sub-Gaussian; for a given sample of size n, for

any δ > 0, with probability 1 − δ, and for any policy π ∈ Π : X → {0, 1}, we have:

L(π, R) ≤ L̂(π, R) + EPnRn(L(Π)) +
√

κ

n
log

(2
δ

)

where κ is a constant.

Lemma A.1 shows that the loss in the population for a given policy π is bounded by

the in-sample misclassification plus the Rademacher complexity of the policy class Π. It

guarantees that population level welfare loss minimization is achievable when we learn the

policy from a given sample. However, because the Rademacher complexity is also growing

with the sample size n, in order to provide a bound for welfare loss, we need to show that

the Rademacher complexity does not grow too fast.

We now introduce the growth function. For any sample with size n, let S = {x1, . . . , xn}.

For any classification algorithm π ∈ Π, we know π will map S to a 0/1 vector: π(x1, . . . , xn) ∈
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{0, 1}n. The total number of dichotomies given by Π is limited by 2n. We define the growth

function ∏
Π

(n) as the total number of dichotomies which can be provided by Π when sample

size is n, formally:

Definition 2 (Growth function, Definition 3.6 in Mohri et al. (2018)) The growth function

of a classification candidate set Π, ∏
Π

: N → N is defined as:

∀n ∈ N,
∏
Π

(n) = max
{x1,...,xn}⊂X

|{(π(x1), . . . , π(xn)) : π ∈ Π}|.

Massart’s lemma links the growth function to Rademacher complexity:

Lemma A.2 (Massart’s Lemma) Let A ⊂ Rn be a finite set, with r = maxx∈A ||x||2 and

Rademacher variables σi, we have E
σ

[
1
n
sup
x∈A

∑n
i=1 σixi

]
≤ r

√
2 log |A|

n
.

Note for any classification algorithm Π, the π(S) set is a dichotomy set, so the size is ∏
Π

(n).

Because we consider the weighted classification, we have r ≤ ||Γ||2. Because Γi is sub-Gaussian,

Khintchine’s inequality (as in exercise 2.6.5 in Vershynin, 2018) shows that r ≤ ζ
√

2n where

ζ is a constant under assumption 7. Therefore we have Rn(Π) ≤ 2ζ

√
log
∏

Π(n)
n

(see Corollary

3.8 in Mohri et al. (2018)).

Finally, we use Sauer’s lemma to link the growth function with VC-dimension.

Lemma A.3 (Sauer’s Lemma, Theorem 3.17 in Mohri et al. (2018)) Let Π be a policy space

with VC(Π) = d, then for all n ≥ d, we have ∏Π(n) ≤ ∑d
i=0

(
n
i

)
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Furthermore,

∏
Π

(n) ≤
d∑

i=0

(
n

i

)

≤
d∑

i=0

(
n

i

)(
n

d

)d−i

≤
n∑

i=0

(
n

i

)(
n

d

)d−i

=
(

n

d

)d n∑
i=0

(
n

i

)(
d

n

)i

=
(

n

d

)d
(

1 + d

n

)n

≤
(

en

d

)d

,

where e denotes Euler’s number .

This yields the following corollary

Corollary 3 For policy π ∈ Π with VC-dimension V C(Π), the following holds:

Rn(π) ≤ 2ζ

√
V C(Π) log en

V C(Π)

n
.

which shows that for any policy with limited complexity (VC-dimension), the Rademacher

complexity is bounded.

Combining lemma A.1 and corollary 3, the result follows.

A.3 Proof for theorem 5.2

By definition, π̂n = π̂k∗ and k∗ = arg max
k

{
Un(π̂k) − Cn(k) −

√
k
n

}
. For each k,

Un(π∗) − Un(π̂n) ≤ Un(π∗) − Un(π̂k).

Note we also have that EPn [1{π̂k ̸= π̂∗}|Γi|] ≥ EPn [W (π̂∗) − W (π̂k)].

By lemma 5.1, we have that EPn [1{π̂k ≠ π̂∗}|Γi|] ≤ L̂(π̂k)+2ζ

√
V C(Π) log en

V C(Π)
n

+
√

κ
n

log
(

2
δ

)
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with probability 1 − δ for every k. Because EPn [U(π∗) − U(π̂k)] = EPn [(W (π∗) − W (π̂∗)︸ ︷︷ ︸
A

) +

(W (π̂∗) − W (π̂k)︸ ︷︷ ︸
B

)] + λ2g2(π̂k) + λ3g3(π̂k) − λ2g2(π∗) − λ3g3(π∗), our result follows directly.

A.4 Choice of Penalty Terms

Bartlett et al. (2002) shows that several penalty terms Cn(k) can satisfy assumption 2 in the

classification setting. We provide the some of their suggestions and related results here.

Hold-out Penalty

We split the sample into a training set (Strain) and a test set (Stest). We define the sample size

of Strain as n. For every k, we estimate π̂k using Strain. We can get the following empirical

welfare:

Utrain(π̂k) = W Strain
n (π̂k) − λ2g2(π̂k) − λ3g3(π̂k)

Utest(π̂k) = W Stest
n (π̂k) − λ2g2(π̂k) − λ3g3(π̂k).

We define the hold-out penalty as

Cn(k) = Utrain(π̂k) − Utest(π̂k).

Recall that the optimal policy is selected by

π̂n = arg max
k

Utrain(π̂k) − Cn(k) −
√

k

n

which simplifies to

π̂n = arg max
k

Utest(π̂k) −
√

k

n
.

We want to show that the Cn(k) formulated in this way satisfies assumption 2. We can see
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that

Pn(Wn(π̂k) − W (π̂k) − Cn(k) > ϵ) = Pn(W Stest
n (π̂k) − W (π̂k) > ϵ)

We further define W̃n(π) = 1
n

∑
π(Xi)Γi, where the true score is used. Note that Wn(π̂k) −

W (π̂k) = Wn(π̂k) − W̃n(π̂k) + W̃n(π̂k) − W (π̂k) and we have

Pn(Wn(π̂k)−W (π̂k)−Cn(k) > ϵ) = Pn

(
W Stest

n (π̂k) − W̃ Stest
n (π̂k) + W̃ Stest

n (π̂k) − W (π̂k) > ϵ
)

.

The term W Stest
n (π̂k) − W̃ Stest

n (π̂k) is bounded following the proof of lemma 4 in Athey and

Wager (2021), which shows that Wn(π̂k)−W̃n(π̂k) is sub-Gaussian conditional on n with mean

zero. Because the welfare is constructed using doubly robust scores, which are sub-Gaussian

by our assumption 7, the second term W̃ Stest
n (π̂k) − W (π̂k) is also a sum of sub-Gaussian with

mean zero. Following from the general Hoeffding inequality, the validity of assumption 2

follows.

We also check assumption 3. Note that

EPn [Cn(k)] = EPn [Utrain(π̂k) − Utest(π̂k)]

= EPn [Wtrain(π̂k) − W (π̂k) + W (π̂k) − Wtest(π̂k)]

By the law of iterated expectations, we have EPn [W (π̂k) − Wtest(π̂k)] = 0. The first term is

bounded from lemma 4 in Athey and Wager (2021).

Maximal Discrepancy

For simplicity assume that the sample size n is even and randomly order the data and split

them into two equally sized sets. Define the empirical welfare for the two parts as

U (1)
n (π) = W (1)

n (π) − λ2g(π) − λ3g(π)

U (2)
n (π) = W (2)

n (π) − λ2g(π) − λ3g(π)
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where the superscript denotes the evaluation sample, the first half (1) or the second half (2).

We denote the penalty term based on the negative maximal discrepancy as

Cn(k) = − max
πk∈Πk

U (1)
n (πk) − U (2)

n (πk) = − max
πk∈Πk

W (1)
n (πk) − W (2)

n (πk).

Following Bartlett et al. (2002), we propose a strategy to estimate Cn(k). Denote

our usual data as D = {(X1, Γ1), . . . , (Xn, Γn)}, we construct a modified dataset

D′ = {(X ′
1, Γ′

1), . . . , (X ′
n, Γ′

n)}, where (X ′
i, Γ′

i) = (Xi, −Γi) for i ≤ n
2 and (X ′

i, Γ′
i) = (Xi, Γi)

for i > n
2 .

Note that

W ′
n(π) = 1

n

n∑
i=1

π(Xi)Γ̂′
i

= − 1
n

n/2∑
i=1

π(Xi)Γ̂i + 1
n

n∑
i=n/2+1

π(Xi)Γ̂i

= 1
2(W (2)

n (π) − W (1)
n (π))

Therefore, the π maximizing W ′
n also solves the maximal discrepancy.

To see why maximal discrepancy works, consider a ghost sample D′′ independent from

the sample and from the same population. For each k, we have

E
[

max
πk∈Πk

{W ′′
n (πk) − Wn(πk)}

]
= 1

n
E

[
max
πk∈Πk

(
n∑

i=1
(π(X ′′

i )Γ̂′′
i − π(Xi)Γ̂i))

]

≤ 1
n

E

max
πk∈Πk

(
n/2∑
i=1

(π(X ′′
i )Γ̂′′

i − π(Xi)Γ̂i)
+ max

πk∈Πk

 n∑
i=n/2+1

(π(X ′′
i )Γ̂′′

i − π(Xi)Γ̂i))


= 2
n

E

max
πk∈Πk

(
n/2∑
i=1

(π(X ′′
i )Γ̂′′

i − π(Xi)Γ̂i)


=E
[

max
πk∈Πk

(W (1)
n (πk) − W (2)

n (πk))
]

.

50



We now check assumption 2. As shown above, following the proof of lemma 4 in Athey

and Wager (2021), we only need to focus on Pn(Λ + W̃n(π̂k) − W (π̂k) − Cn(k) > ϵ) where we

know Λ = Wn(π̂k) − W̃n(π̂k) is sum of mean zero sub-Gaussian random variables. Note that

Pn(Λ + W̃n(π̂k) − W (π̂k) − Cn(k) > ϵ)

=Pn

(
Λ + W̃n(π̂k) − W (π̂k) + max

πk∈Πk

{W (1)
n (πk) − W (2)

n (πk)} > ϵ
)

≤Pn

(
Λ + max

πk∈Πk

{Λ(1) − Λ(2) + W̃ (1)
n (πk) − W̃ (2)

n (πk)} − inf
πk∈Πk

{W̃n(πk) − W (πk)} > ϵ
)

≤Pn

(
Λ + max

πk∈Πk

{Λ(1) − Λ(2) + W̃ (1)
n (πk) − W̃ (2)

n (πk)} − inf
πk∈Πk

{W̃n(πk) − W (πk)}

> E
[

max
πk∈Πk

{Λ(1) − Λ(2) + W̃ (1)
n (πk) − W̃ (2)

n (πk)} − inf
πk∈Πk

{W̃n(πk) − W (πk)}
]

+ ϵ
)

where the last inequality comes from the fact that the max term is greater or equal than

zero, and the inf term is less or equal to zero. Note that for any sample {(Xi, Γi)}, if we

change the value of Γi while fixing the other Γs, max
πk∈Πk

{Λ(1) − Λ(2) + W̃ (1)
n (πk) − W̃ (2)

n (πk)} −

inf
πk∈Πk

{W̃n(πk) − W (πk)} will change at most Γi

n
. We also have that Γi is a sub-Gaussian

variable. Therefore, Λ + sup
πk∈Πk

(W̃n(πk) − W (πk)) − max
πk∈Πk

(W (1)
n (πk) − W (2)

n (πk)) satisfies the

condition of theorem 2.6.2 in Vershynin (2018), and the result follows.

We finally check assumption 3. Again, note that

EPn [Cn(k)] = EPn

[
max
πk∈Πk

{W (1)
n (πk) − W (2)

n (πk)}
]

= EPn

[
max
πk∈Πk

{W (1)
n (πk) − W (πk) + W (πk) − W (2)

n (πk)}
]

≤ 2EPn

[
max
πk∈Πk

{W (πk) − W (1)
n (πk)}

]

Apply lemma 4 and corollary 3 in Athey and Wager (2021) and the result follows.
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B Variables Used to Assign Treatment in the PRO-

GRESA Application

The variables originally used by PROGRESA to determine eligibility, as listed in Coady et al.

(2013), are the following:

• Household head without education

• Household head with only primary education

• Female household head

• No refrigerator

• No washing machine

• No vehicle (car or truck)

• No toilet connected to running water

• Age of household head (years)

• Unpaved floor

• No gas heating

• Family size/rooms in the house

• Children 0 to 11 years old

• Children/working age adults

For our analysis, we focus at the individual level rather than household level. We include

children’s age, and exclude the “Children 0 to 11 years old” and “Children/working age

adults”.
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At the additional measurement cost of conducting a full household survey, we assume

the policy maker can access the following measures derived from the PROGRESA impact

evaluation’s household questionnaire.

• Child’s distance from the school where they would complete their next grade

• Whether the child’s household is single parent

• How many years of education the child has completed at the time of surveying

• Whether the child has completed primary school

• Whether the child has completed lower secondary school

• Whether the child has completed upper secondary school

• Household size

• Whether the household has piped water
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