
Matrix Completion
(Apologies in advance if ·̂ (LaTeX hat) is rendered poorly in the HTML. For some browsers, the hats may
have to be shifted a touch to the left.)

A Simple Problem

Consider a 3× 2 matrix A, where we are unable to observe one of the values:

A =

 1 ?
4 8
3 6

 .

What would be a good guess for the missing value in A? This depends on how we define “good”. One objective
would be that we want A to be as “simple” as possible. Again, though, we are left with the question, what do
we mean by “simple”? In matrix algebra, one notion of simplicity is rank: “the maximal number of linearly
independent columns,” as per Wikipedia. For A, for the complete rows, we have the following formula:

ai2 = 2ai1.

That being the case, if we were to complete the matrix as,

Â =

 1 2
4 8
3 6

 ,

we would have a matrix for which the rank of Â is 1:
hatA <- matrix(c(1,2,4,8,3,6), ncol=2, byrow=T)
require(Matrix)

## Loading required package: Matrix

rankMatrix(hatA)[1]

## [1] 1

Suppose that we insert any other real number value k, to generate Ã(k). This would result in increasing the
rank of Â to 2:
testVals <- sample(c(-10:1, 3:10), 5)
rankTestRes <- rep(NA, length(testVals))
for(i in 1:length(testVals)){

hatA.alt <- matrix(c(1,testVals[i],4,8,3,6), ncol=2, byrow=T)
rankTestRes[i] <- rankMatrix(hatA.alt)[1]

}
print(rankTestRes)

## [1] 2 2 2 2 2

As such, Â is the unique solution to the problem of completing the matrix A with a value that minimizes
rank.
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Generalizing

This is an example of a matrix completion problem where we defined an objective function as follows:

minimize rank(Â)
s.t. aij = âij for (i, j) ∈ Ω,

where Ω is the set of (i, j) with values observed.

As such, the rank is a matrix-level loss function, and our solution must abide by a constraint that all complete
rows are replicated. This generalizes to situations where the matrix A has more columns and rows, of course.

A complication is with larger matrices, computing rank can be difficult. As such, matrix completion methods
are generally based on more tractable loss function. One function is based on the “nuclear norm,” which is
the sum of singular values of the matrix, A. There is a close relationship between the nuclear norm and the
rank: a matrix of rank r has r non-zero singular values. If a matrix has lots of large singular values, it means
that it contains many dimensions of orthogonal variation. To get the intuition, think about the relationship
between singular values and eigenvalues. Recall that the eigenvalues of a covariance matrix measure the
amount of variance explained by the corresponding principal components. For matrix A, the singular values
correspond to the square root of the eigenvalues of A′A, where this latter matrix product yields eigenvalues
that are scalar multiples of the eigenvalues of the covariance matrix of A.

Now, we can also state a matrix completion loss function as follows:

min
Â
||A− Â||a + λ||Â||b,

where the norms a and b in this expression immediately above would correspond to our simple example as
follows: || · ||a would correspond to a norm that is minimized when Â replicates A for all (i, j) ∈ Ω, such
as the Euclidean norm, and then || · ||b would correspond to a norm that reflects (at least for the simple
problem) the rank of the matrix, such as the nuclear norm.

A useful guide to matrix completion methods is available here: http://statweb.stanford.edu/~candes/papers/
MatrixCompletion.pdf

Application to Causal Inference

The application of these methods to causal inference, as presented by Athey et al. (2018; link below), is
pretty straightforward, then. For causal inference, you could want to compare outcomes under treatment,
say, a matrix of Y1 values, to outcomes under control, a matrix of Y0 values. But of course we have the
“fundamental problem of causal inference,” and so for units in treatment, their control outcomes in Y0 are
not observed, and vice versa for units in control. The solution? Do matrix completion for the Y0, in which
case you can estimate the ATT simply by taking the difference in means between the observed values in Y1
and the imputed values in Y0.

This is, in essence, the approach proposed by Athey et al.: https://arxiv.org/abs/1710.10251

Questions or corrections welcome in the comments.
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