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a b s t r a c t

This paper demonstrates that the randomization-based ‘‘Neyman’’ and constant-effects
estimators for the variance of estimated average treatment effects are equivalent to
a variant of the White ‘‘heteroskedasticity-robust’’ estimator and the homoskedastic
ordinary least squares (OLS) estimator, respectively.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Design-based methods for analyzing experiments use the known treatment assignment distribution as the basis for
inference on causal quantities such as the average treatment effect. Such methods for ‘‘randomization inference’’ have
recently been presented as more reasoned alternatives to more commonly used regression-based methods that rely on
seemingly arbitrary assumptions about the distribution of outcomes in order to derive properties for estimators. Freedman
(2008b); Rosenbaum (2002a,b, 2009) develop this point, often with particular reference to the estimated uncertainty of
regression estimators. Regression models have been the standard mode of analysis for experiments. If the assumptions
embedded in regression analysis lead tomisestimates of the true estimator variance, the reliability of many reported results
would be called into question.

At the same time, there may be no cause for alarm, as there is a difference between the manner in which an estimator is
derived and the way the estimator operates in practice. Indeed, it is straightforward to demonstrate that regression analysis
reproduces common randomization-based estimators.We show that the conservative randomization-basedNeyman (1923)
variance estimator is exactly reproduced by a variant of the commonly-used White heteroskedasticity-robust variance
estimator (Horn et al., 1975; White, 1980; MacKinnon and White, 1985), and that the randomization variance of the
difference-in-means under a constant effects assumption is reproduced (subject to a finite-sample scaling coefficient) by
the ordinary least squares (OLS) homoskedastic variance estimator. We also show that all four of these estimators are
equivalent under a balanced design, suggesting that, in many cases, the choice of variance estimator is irrelevant. The paper
presents each of these results in turn. We conclude with a note on the use of regression for the analysis of randomized
experiments.
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2. The setting

Consider an experiment on a finite population U of N units in which 1 < M < N − 1 units are randomly assigned to
treatment and the remaining units are assigned to control. Denote control or treatment status, respectively, for unit j with
the random variable Xj ∈ {0, 1} for which Pr(Xj = 1) = M/N . Reassign an index ordering, i = 1, . . . ,N , such that those
assigned to treatment come first, X1, . . . , XM = 1 and those assigned to control come after, XM+1, . . . , XN = 0. We observe

Yi = Xiy1i + (1 − Xi)y0i, (1)

where y1i and y0i are unit i’s fixed ‘‘potential outcomes’’ under treatment and control, respectively.
Given a feature vi for i ∈ 1, . . . ,N , we define the population mean, v, and variance, σ 2(v), as,

v =
1
N

N−
i=1

vi

σ 2(v) =
1
N

N−
i=1

(vi − v)2.

For features vi and wi for i ∈ 1, . . . ,N , we define the population covariance, σ(v, w) as,

σ(v, w) =
1
N

N−
i=1

(vi − v)(wi − w).

We wish to estimate the average treatment effect, β , for the finite population U ,

β = y1 − y0 =
1
N

N−
i=1

(y1i − y0i).

It is well known that by random assignment, we can estimate β without bias via the simple difference in treated versus
control means,

β̂ =
1
M

M−
i=1

Yi −
1

N − M

N−
i=M+1

Yi, (2)

with E

β̂


= β , where the E [·] operator averages over all


N
M


treatment assignments, each being equally likely.

Following Neyman (1923) and Freedman et al. (1998, A32–A34), elementary sampling theory allows us to derive the
expression for the exact variance of β̂ as,

V (β̂) =
N

N − 1

[
σ 2(y1)

M
+

σ 2(y0)
N − M

]
+

1
N − 1


2σ(y1, y0) − σ 2(y1) − σ 2(y0)


. (3)

The unknown quantities in this expression are σ 2(y1), σ 2(y0) and σ(y1, y0). With estimators of each of these quantities, we
could construct an unbiased estimator of V (β̂). By Cochran (1977, Theorem 2.4), unbiased estimators of σ 2(y1) and σ 2(y0)
are simple to construct:

σ̂ 2
FP(y1) =

N − 1
N

1
M − 1

 M−
i=1


Yi −

1
M

M−
i=1

Yi

2


=
N − 1
N

σ̂ 2(y1)

and

σ̂ 2
FP(y0) =

N − 1
N

1
N − M − 1

 N−
i=M+1


Yi −

1
N − M

N−
i=M+1

Yi

2


=
N − 1
N

σ̂ 2(y0),

where σ̂ 2(y1) and σ̂ 2(y0) are the traditional sample variance estimators. Since both potential outcomes for the same unit
can never be observed at the same time, the term σ(y0, y1) cannot generally be estimated without bias. However, we can
bound this quantity: 2σ(y0, y1) − σ 2(y0) − σ 2(y1) ≤ 0.1

1 This is due to σ 2(y0) + σ 2(y1) − 2


σ 2(y0)


σ 2(y1) = (


σ 2(y0) −


σ 2(y1))2 ≥ 0, and 2


σ 2(y0)


σ 2(y1) ≥ 2σ(y0, y1) by the Cauchy–Schwartz
inequality.
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Now, let us turn to re-expressing this setting in regression form. Define

Z =

1 X1
...

...
1 XN

 =

Z1
...
ZN

 Y =

Y1
...
YN

 .

Then the regression estimator,

(Z ′Z)−1Z ′Y =


α̂

β̂OLS


=


1

N − M

N−
i=M+1

Yi

1
M

M−
i=1

Yi −
1

N − M

N−
i=M+1

Yi

 , (4)

and so β̂OLS = β̂ (Freedman, 2008b, Theorem 1). For future reference, define êi = Yi − Zi(Z ′Z)−1Z ′Y , the regression residual.

3. The Neyman conservative randomization-based estimator and the White heteroskedasticity-robust estimator

The Neyman estimator of V (β̂) substitutes σ̂ 2
FP(y1) and σ̂ 2

FP(y0) for σ 2(y1) and σ 2(y0), and assumes that 2σ(y0, y1) −

σ 2(y0) − σ 2(y1) = 0, yielding,

V̂ N(β̂) =
N

N − 1


σ̂ 2

FP(y1)
M

+
σ̂ 2

FP(y0)
N − M


=

σ̂ 2(y1)
M

+
σ̂ 2(y0)
N − M

.

Since σ̂ 2
FP(y1) and σ̂ 2

FP(y0) are unbiased,

E

V̂ N(β̂)


=

N
N − 1

[
σ 2(y1)

M
+

σ 2(y0)
N − M

]
.

Subtracting off V (β̂), as in (3), the bias of V̂ N(β̂),

E

V̂ N(β̂)


− V (β̂) = −

1
N − 1


2σ(y1, y0) − σ 2(y1) − σ 2(y0)


≥ 0.

The Neyman estimator is therefore conservative: its bias is always nonnegative. As demonstrated in Freedman (2008a,
Theorem 1), asymptotic normality of β̂ implies that large-sample confidence intervals, using V̂ N(β̂) in a normal
approximation will have either approximately correct or conservative coverage.

In the traditional regression framework, the êi residual approximates the ‘‘error’’ term of a linear model. For the case of
heteroskedastic errors, White (1980) proposed a consistent estimator for the covariance of (α̂ β̂)′,

V̂ HR


α̂

β̂


= N(Z ′Z)−1


1
N

N−
i=1

Z ′

i Ziê
2
i


(Z ′Z)−1.

MacKinnon andWhite (1985) and Angrist and Pischke (2009, 299–308) review three amended versions of V̂ HR, constituting
a class of ‘‘heteroskedasticity-robust’’ variance estimators. Each amendment reduces some formof finite sample bias. Among

these, a commonly used version is the ‘‘HC2’’ estimator, in which ê2i
1−hii

is substituted for ê2i in the previous equation, where
hii = Zi(Z ′Z)−1Z ′

i is the leverage of observation i. In this case,

hii =


1
M

if Xi = 1
1

N − M
if Xi = 0.

The HC2 estimator for the variance of the average treatment effect, V̂ HC2(β̂), is the [2, 2] element of the resulting covariance
matrix:

V̂ HC2


α̂

β̂


= N(Z ′Z)−1


1
N

N−
i=1

Z ′

i Zi
ê2i

1 − hii


(Z ′Z)−1.

We now present our first result.

Theorem 1. V̂ HC2(β̂) = V̂ N(β̂).
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Proof. The HC2 estimator for the variance of β̂ reduces algebraically to,

V̂ HC2(β̂) =
1
M

1
M − 1

M−
i=1

ê2i +
1

N − M
1

N − M − 1

N−
i=M+1

ê2i .

The regression residual, êi, is algebraically equivalent to Yi −
1
M

∑M
i=1 Yi if i ≤ M (i.e., treated), and Yi −

1
N−M

∑N
i=M+1 Yi if

i > M (i.e., control). Therefore,

1
M − 1

M−
i=1

ê2i = σ̂ 2(y1) and
1

N − M − 1

N−
i=M+1

ê2i = σ̂ 2(y0).

The HC2 version of the White estimator may be represented as,

V̂ HC2(β̂) =
σ̂ 2(y1)

M
+

σ̂ 2(y0)
N − M

.

Therefore, V̂ HC2(β̂) = V̂ N(β̂), and the Neyman estimator is equivalent to the White HC2 estimator. �

Corollary 1. E

V̂ HC2(β̂)


≥ V (β̂).

Proof. Since E

V̂ N(β̂)


≥ V (β̂) and V̂ HC2(β̂) = V̂ N(β̂), E


V̂ HC2(β̂)


≥ V (β̂). The HC2 estimator is therefore generally

conservative. �

Above, we noted that large-sample confidence intervals based on V̂ N(β̂) had either approximately correct or conserva-
tive coverage. Clearly, this extends to V̂ HC2(β̂).2

4. Constant effects randomization variance and homoskedastic OLS estimator

Rosenbaum (2002a,b, 2009) studies randomization-based inference bymaintaining constant additive effects hypotheses.
Under the maintained hypothesis, the treatment effect is assumed to be the same scalar quantity for all units. Then,
inferences about the average treatment effect are based on studying the distribution of estimated treatment effects as
one permutes the treatment assignment. The general approach has attracted a fair number of adherents among applied
researchers (e.g., Bowers, 2011). Here we show that the variance of the estimated treatment effects that obtains, through
such permutation under a maintained hypothesis of constant effects equal to β̂ , reproduces the variance estimate from
ordinary least squares (OLS) regression analysis under the homoskedasticity assumption, subject to a slight scaling factor.

By maintaining the hypothesis of constant additive effects equal to β̂ , we can use expressions (1) and (2) to construct a
hypothesized set of potential outcomes, ỹ0i and ỹ1i, for all i = 1, . . . ,N as follows:

ỹ0i = Yi − Xiβ̂ = Yi − Xi


1
M

M−
i=1

Yi −
1

N − M

N−
i=M+1

Yi


and

ỹ1i = Yi + (1 − Xi)β̂ = Yi + (1 − Xi)


1
M

M−
i=1

Yi −
1

N − M

N−
i=M+1

Yi


.

By (3), the hypothesis of constant effects implies that the randomization variance for the estimated treatment effect should
be estimated as,

V̂ CE(β̂) =
N

N − 1

[
σ 2(ỹ1)

M
+

σ 2(ỹ0)
N − M

]
+

1
N − 1


2σ(ỹ1, ỹ0) − σ 2(ỹ1) − σ 2(ỹ0)


. (5)

Note that there are no unknown terms in (5): the σ 2(ỹ1), σ 2(ỹ0) and σ(ỹ1, ỹ0) values in (5) may be computed using the
hypothesized potential outcomes that have been defined for all N units.

2 Implications for the other heteroskedasticity-robust estimators (HR, HC1, and HC3) studied in MacKinnon and White (1985) and Angrist and Pischke
(2009, 299–308) are straightforward. The other estimators are all asymptotically equivalent to HC2 and, thus, large-sample confidence intervals based on
any of the heteroskedasticity-robust estimators have either approximately correct or conservative coverage.
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Returning to the regression formulation, under the assumption of homoskedastic errors, the OLS coefficient covariance
matrix is given by,

V̂ OLS


α̂

β̂


=

N∑
i=1

ê2i

N − 2
(Z ′Z)−1,

with V̂ OLS(β̂) denoting the [2, 2] element of this covariance matrix. Freedman (2008b, Theorem 5) demonstrates that for
N ≠ 2M , V̂ OLS(β̂) converges asymptotically to a limit that may be too big or too small relative to V (β̂).

We now demonstrate that the constant effects randomization variance is equivalent to a scaled homoskedastic OLS
estimator.

Theorem 2. N−2
N−1 V̂ OLS(β̂) = V̂ CE(β̂).

Proof. Since ỹ0 = ỹ1 − β̂ , σ 2(ỹ0) = σ 2(ỹ1) = σ(y0, y1). Thus, substituting this into expression (5), randomization yields,

V̂ CE(β̂) =
N

N − 1
N

M(N − M)
σ 2(ỹ0).

Now, taking α̂ and β̂ as fixed,

N∑
i=1

ê2i

N
=

N∑
i=1


Yi − α̂ − Xiβ̂

2
N

=

N∑
i=1


ỹ0i − α̂

2
N

= σ 2(ỹ0),

by (4) and simple algebraic manipulations. Therefore,

N − 2
N − 1

V̂ OLS(β̂) =
N − 2
N − 1

N∑
i=1

ê2

N − 2
N

M(N − M)

=
N

N − 1

N∑
i=1

ê2

N
N

M(N − M)

=
N

N − 1
N

M(N − M)
σ 2(ỹ0) = V̂ CE(β̂). �

As a result, the fact noted above that when N ≠ 2M , V̂ OLS(β̂) may be either too large or too small relative to V (β̂)

carries over to V CE(β̂).3 Then, in large samples, confidence intervals based on V̂ OLS(β̂) or V̂ CE(β̂) are not assured to be
approximately correct or conservative, in contrast to V̂ N(β̂) and V̂ HC2(β̂).

Concerns about outliers or other irregularities may motivate the analyst to conduct inference with statistics other than
the difference-in-means, such as rank sums. Alternative procedures based on inverted tests and constant effects hypotheses
are also possible.4 The implications of these results for such tests are not entirely clear, as they would likely depend on
distributional features of the data at hand.

5. The balanced design

In a balanced design, equal numbers of units are assigned to the treatment and control groups. Calculations are simplified
greatlywith a balanced design and, accordingly, many results about the properties of variance estimators assume a balanced
design (Gadbury, 2001).

Theorem 3. Under a balanced design such that N = 2M, N−1
N−2 V̂ CE(β̂) = V̂ OLS(β̂) = V̂ N(β̂) = V̂ HC2(β̂).

3 Freedman (2008b, p. 190) gives the exact asymptotic relation between V̂ OLS(β̂) and V (β̂), which depends on the size of the treatment versus control
group and the limiting values of the control group mean and average treatment effect.
4 Indeed, Rosenbaum (2002a,b, 2009) develops his analysis of randomization inference for the constant effects model using a rank sum test and

Hodges–Lehmann confidence intervals.
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Proof. With N = 2M and by Theorems 1 and 2,

N − 1
N − 2

V CE(β̂) = V̂ OLS(β̂) =

N∑
i=1

ê2i

2(M − 1)
2M
M2

=

M∑
i=1

ê2i

M−1

M
+

N∑
i=M+1

ê2i

M−1

M

=
V̂ (y1)
M

+
V̂ (y0)
M

= V̂ N(β̂) = V̂ HC2(β̂). �

While this result is heartening, it nevertheless represents a special case. For imbalanced designs, the choice of variance
estimator is nontrivial.

6. Discussion

The results allow us to qualify Freedman (2008b)’s critique of the use of regression models to analyze randomized
experiments. In the critique, Freedman claims that variance estimation based on the ‘‘usual’’ homoskedastic error model is,
in general, inconsistent for the randomization variance of the estimated average treatment effect. While technically correct,
it is of little practical significance for current practice in econometrics and associated social sciences. Standard estimation
practice today, as presented for example in Angrist and Pischke (2009), is to use a heteroskedastic model and some variant
of the White (1980) ‘‘robust’’ estimator. Theorem 1 shows that randomization justifies the HC2 estimator and Theorem 2
shows that the randomization-based constant effects estimator is equivalent (minus a scaling factor) to the OLS estimator
that Freedman criticizes.

Regression may not be the correct tool for analyzing data from experiments and we do not advocate its use over
design-based estimators. In small experiments, covariate adjustment introduces bias that may be severe, and clustered
random assignment may render simple difference-in-means and related regression estimators biased (Middleton, 2008).
Nonetheless, while randomization may not justify regression assumptions, randomization does justify some modern
econometric practice, including heteroskedasticity-robust variance estimation. In addition, design-based estimators that
exploit the randomization distribution while eschewing regression assumptions may not be as different from classical
regression estimators as may seem at first glance.
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