Estimating average causal effects under general interference between units

Peter M. Aronow and Cyrus Samii

Yale University and New York University

March 2, 2012

- Randomized experiments often involve treatments that may induce "interference between units"
- Interference: the outcome for unit *i* depends on the treatment assigned to unit *j*. If we administer a treatment to unit *j*, what are the effects on unit *i*?
- Traditionally a nuisance, but now a topic of study in the study of spillovers, equilibrium adjustment, networks, etc.
- Recent work in non-parametric inference focuses on hypothesis testing or estimation in hierarchical (i.e., multilevel) interference settings. We develop a theory of design-based estimation under general interference.

What's out there?

Figure 2: Section of Village with geographical clusters



Notes: The solid white lines delimit a geographical cluster. A square represents the location of a T<sub>1</sub> household, a star represents a T<sub>2</sub> household and a dot represents a control household in a control cluster. A triangle represents a control household in a treated cluster (lefter T<sub>1</sub> or T<sub>2</sub>).

$$Y_{ijt} = a + \beta_1 \cdot T_{1it} + \beta_2 \cdot T_{2it} + X'_{ijt}\delta + \sum_d (\gamma_d \cdot N_{dit}^T) + \sum_d (\phi_d \cdot N_{dit}) + u_i + e_{ijt}.$$

school *i* in year *t* of the program.<sup>26</sup> Given the total number of children attending primary school within a certain distance from the school, the number of these attending schools assigned to treatment is exogenous and random. Since any independent effect of local school density is captured in the  $N_{dit}$  terms, the  $\gamma_d$  coefficients measure the deworming treatment externalities across schools.

(Miguel & Kremer, 2004, 175-6)

- Linear approximation of indirect exposure from to  $N_{di}^T$ .
- Requires extrapolation, since  $Pr(N_{di}^T = n) = 0$  for some *i*, *n*.
- Even under generous assumptions, fixed effects would not aggregate to ATE (Angrist & Pischke, 2009).
- Subtle ratio estimation biases for finite samples.
- Variance estimation? Not clear ex ante, given complex dependencies between units.

- We provide a nonparametric *design-based* method for estimating average causal effects, including (but not limited to):
- Direct effect of assigning a unit to treatment
- Indirect effects of, e.g., a unit's peer being assigned to treatment
- More complex effects (e.g., effect of having a majority of proximal peers treated)
- The researcher must have knowledge of two characteristics:
  - The design of the experiment. What is the probability profile over all possible treatment assignments?
  - The exposure model. How do treatment assignments map onto actual exposures, direct or indirect?
- Methods are based on Horvitz-Thompson (HT) estimation (sample theoretic).

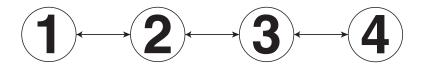
Method summary:

- The analyst specifies an exposure model, converting vectors of assigned treatments to vectors of actual exposures
- The analyst computes the *exact* probabilities that each unit will receive a given exposure
- The probabilities yield a simple, unbiased estimator of average causal effects

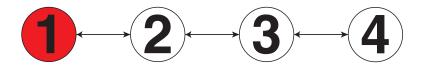
What you should remember from this presentation, if nothing else:

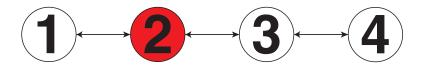
- Equal probability randomization does **NOT** imply equal probability of exposure
- Common naive methods ignoring these unequal probabilities (e.g., difference-in-means, regression) can lead to bias, even asymptotically

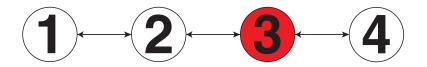
- To ground concepts, we provide a simple running example
- Consider a randomized experiment performed on a finite population of four units in a simple, fixed network:

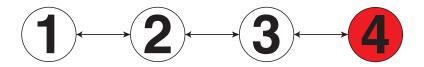


- One of these units is assigned to receive an campaign advertisement and the other three are assigned to control, equal probability
- We want to estimate the effects of advertising on opinion
- There are four possible randomizations z:







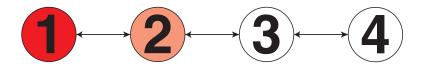


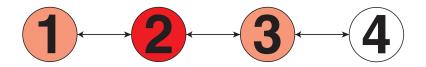
- So we have exact knowledge of the randomization scheme.
- But what of the exposure model? This requires researcher discretion. How do we model exposure to a treatment?
- One example.

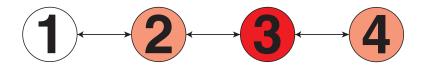
- Direct exposure means that you have been treated.
- Indirect exposure means that a peer has been treated.

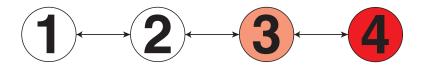
$$D_i = \left\{ egin{array}{ll} {
m Di}({
m rect}):&Z_i=1\ {
m In}({
m direct})&Z_{i\pm 1}=1\ {
m Co}({
m ntrol})&Z_i=Z_{i\pm 1}=0. \end{array} 
ight.$$

- There is nothing particularly special about this model, except for its parsimony. Arbitrarily complex exposure models are possible.
- Let's visualize this.

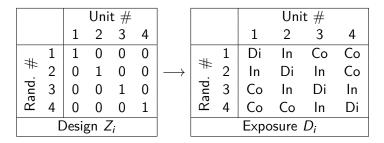








## Summarizing:



We can figure out the exact probabilities that each of the four units would be in each of the exposure conditions:

|                           |                         |      |      | Unit # |        |        |    |    |
|---------------------------|-------------------------|------|------|--------|--------|--------|----|----|
|                           |                         |      | 1    | 2      | 3      | 4      |    |    |
|                           | F                       | 1    | Di   | In     | Co     | Сс     | >  |    |
|                           | #                       | 2    | In   | Di     | In     | Сс     | >  |    |
|                           | Rand.                   | 3    | Co   | In     | Di     | In     |    |    |
|                           | R                       | 4    | Co   | Co     | In     | Di     | i  |    |
|                           | Exposure D <sub>i</sub> |      |      |        |        |        |    |    |
|                           | Unit #                  |      |      |        |        |        |    |    |
|                           |                         |      | 1    | 2      | 3      |        |    | 4  |
| Direct                    |                         |      | 0.25 | 0.25   | 0.2    | 0.25 0 |    | 25 |
| Indirect                  |                         | 0.25 | 0.50 | 0.5    | 0.50 0 |        | 25 |    |
| Co                        | Control                 |      | 0.50 | 0.25   | 0.2    | 25     | 0. | 50 |
| Probabilties $\pi_i(D_i)$ |                         |      |      |        |        |        |    |    |

Neyman-Rubin model: *potential outcome* associated with each exposure, but "fundamental problem of causal inference" in that we observe only one potential outcome per unit.

• If unit *i* receives exposure  $d_k$ , outcome is  $Y_i(d_k)$ .

|                               | Unit # |    |    |   |      |
|-------------------------------|--------|----|----|---|------|
|                               | 1      | 2  | 3  | 4 | Mean |
| Direct                        | 5      | 10 | 10 | 3 | 7    |
| Indirect                      | 0      | 3  | 3  | 2 | 2    |
| Control                       | 1      | 3  | 6  | 2 | 3    |
| Potential outcomes $Y_i(D_i)$ |        |    |    |   |      |

- Average causal effect:  $\tau(d_k, d_l) = \frac{1}{N} \sum_{i=1}^{N} [Y_i(d_k) Y_i(d_l)].$
- E.g.,  $\tau(Direct, Control) = \frac{1}{N} \sum_{i=1}^{N} [Y_i(Direct) Y_i(Control)] = 4.$

• Unequal probability design provides a natural, and design-unbiased estimator. The Horvitz-Thompson (HT) estimator:

$$\hat{\tau}_{HT}(d_k, d_l) = \frac{1}{N} \sum_{i=1}^{N} \left[ \frac{\mathsf{I}(D_i = d_k)}{\pi_i(d_k)} Y_i(d_k) - \frac{\mathsf{I}(D_i = d_l)}{\pi_i(d_l)} Y_i(d_l) \right]$$

• Unbiasedness is very easy to see.

$$\operatorname{E}\left[\frac{1}{N}\sum_{i=1}^{N}\left[\frac{\mathsf{I}(D_i=d_k)}{\pi_i(d_k)}Y_i(d_k)-\frac{\mathsf{I}(D_i=d_l)}{\pi_i(d_l)}Y_i(d_l)\right]\right]=$$

$$\frac{1}{N}\sum_{i=1}^{N}\left[\frac{\mathrm{E}\left[\mathsf{I}(D_i=d_k)\right]}{\pi_i(d_k)}Y_i(d_k)-\frac{\mathrm{E}\left[\mathsf{I}(D_i=d_l)\right]}{\pi_i(d_l)}Y_i(d_l)\right]=$$

$$rac{1}{N}\sum_{i=1}^N \left[rac{\pi_i(d_k)}{\pi_i(d_k)}Y_i(d_k)-rac{\pi_i(d_k)}{\pi_i(d_l)}Y_i(d_l)
ight]=$$

$$\frac{1}{N}\sum_{i=1}^{N}\left[Y_i(d_k)-Y_i(d_l)\right]=\tau(d_k,d_l)$$

- Unbiasedness follows from very clear assumptions:
- How was the randomization administered? (known)
- What is the exposure model? (assigned by analyst)
- These assumptions are always being made, although often obscured and/or inconsistent with the experimental design
- Here, design and assumptions directly motivate the estimator

• E.g., for the first randomization  $\mathbf{z} = (1, 0, 0, 0)$ , we would observe:

| Y <sub>i</sub> | 5    | 3    | 6    | 2    |
|----------------|------|------|------|------|
| $Z_i$          | 1    | 0    | 0    | 0    |
| $D_i$          | Di   | In   | Co   | Co   |
| $\pi_i(D_i)$   | 0.25 | 0.50 | 0.25 | 0.50 |

• HT estimator:

$$\hat{\tau}_{HT}(Di, Co) = \frac{1}{4} \left[ \frac{5}{0.25} - \left( \frac{6}{0.25} + \frac{2}{0.50} \right) \right] = -2$$

• Can also look at the difference in means estimator (logically equivalent to an OLS regression of the outcome on treatment dummies):

$$\hat{\tau}_{DM}(Di, Co) = \frac{5}{1} - \frac{6+2}{2} = 1$$

• So let's see how the HT estimator performs against the difference in means estimator

Across all randomizations,

|      |      | Diff. in       | Means           | $\widehat{	au_{HT}}(a)$ | $\widehat{\tau_{HT}}(d_k, d_l)$ |  |  |
|------|------|----------------|-----------------|-------------------------|---------------------------------|--|--|
| ~    | 1    | 1.00           | -1.00           | -2.00                   | -5.50                           |  |  |
| #    | 2    | 8.00           | -0.50           | 9.00                    | 0.50                            |  |  |
| Rand | 3    | 9.00           | 1.50            | 9.50                    | 3.00                            |  |  |
| Ra   | 4    | 1.00           | 1.00            | -0.50                   | -2.00                           |  |  |
|      | E[.] | 4.75           | 0.25            | 4.00                    | -1.00                           |  |  |
| Bias |      | 0.75           | 1.25            | 0.00                    | 0.00                            |  |  |
|      |      | $\tau(Di, Co)$ | $\tau$ (In, Co) | $\tau$ (Di, Co)         | $\tau$ (In, Co)                 |  |  |

- The difference in means / OLS estimator is badly biased in fact, in, expectation, it even gets the sign wrong for the indirect effect
- Not just a small sample problem bias even in asymptopia.

Inference:

$$\operatorname{Var}\left(\widehat{\tau_{HT}}(d_k, d_l)\right) = \frac{1}{N^2} \left\{ \operatorname{Var}\left[\widehat{Y_{HT}^{\mathsf{T}}}(d_k)\right] + \operatorname{Var}\left[\widehat{Y_{HT}^{\mathsf{T}}}(d_l)\right] - 2\operatorname{Cov}\left[\widehat{Y_{HT}^{\mathsf{T}}}(d_k), \widehat{Y_{HT}^{\mathsf{T}}}(d_l)\right] \right\},$$

where,

$$\operatorname{Var}\left[\widehat{Y_{HT}^{T}}(d_{k})\right] = \sum_{i=1}^{N} \sum_{j=1}^{N} \operatorname{Cov}\left[\mathbf{I}(D_{i} = d_{k}), \mathbf{I}(D_{j} = d_{k})\right] \frac{Y_{i}(d_{k})}{\pi_{i}(d_{k})} \frac{Y_{j}(d_{k})}{\pi_{j}(d_{k})}$$

$$\operatorname{Cov}\left[\widehat{Y_{HT}^{T}}(d_{k}), \widehat{Y_{HT}^{T}}(d_{l})\right] = \sum_{i=1}^{N} \sum_{j=1}^{N} \operatorname{Cov}\left[\mathbf{I}(D_{i} = d_{k}), \mathbf{I}(D_{j} = d_{l})\right] \frac{Y_{i}(d_{k})}{\pi_{i}(d_{k})} \frac{Y_{j}(d_{l})}{\pi_{j}(d_{l})}$$

- Young's inequality provides approximations for unidentified components, and estimation proceeds using Horvitz-Thompson style estimator.
- In expectation, these approximations are conservative; and unbiased under sharp null hypothesis of no effect (for many designs).
- Asymptotic normality / conservative confidence intervals follow from restrictions on clustering.
- The paper contains "model-assisted" refinements for covariance adjustment, weight stabilization and constant effects variance estimation.

Example: Paluck and Shepherd (2012)

- (Rough) design:
  - Measured connections between 291 students with predeployment survey (via listing of friends)
  - Identified 83 "key" individuals, randomized 30 into attending an anti-bullying program
  - Measured behavioral and attitudinal outcomes for all 291 students
- How to analyze?
  - Interested in both *direct* (effects of attending program) and *indirect* effects (effects of peers attending program)
  - Heterogeneous (and sometimes zero) probabilities of exposure, implicit clustering
  - Outcome variable (for illustration): teacher evaluations of behavior (higher score = worse behavior)

Example: Paluck and Shepherd (2012)

- Consider the following exposure model:
  - Control: Not attending program, no peers in program
  - Direct: Attending program, no peers in program
  - Indirect: Not attending program, peers in program
  - Combined: Attending program, peers in program
- Some complexities. Effects estimated will be "local" average treatment effects.
- Can use more/less complex exposure models

Example: Paluck and Shepherd (2012)

| Exposure | Naive           | Regression      | HT      |
|----------|-----------------|-----------------|---------|
|          | (Diff-in-Means) | (Fixed Effects) | (Ours!) |
| Direct   | -0.775          | -0.752          | -1.400  |
| (SE)     | (0.793)         | (0.927)         | (1.133) |
| Indirect | -0.382          | -0.648          | -0.607  |
| (SE)     | (0.434)         | (0.596)         | (1.106) |
| Combined | -1.331          | -1.663          | -1.792  |
| (SE)     | (0.956)         | (1.220)         | (1.617) |

Anticipating some concerns, sensitivity analysis, & implications.

Concern: "But you're still specifying an exposure model! What if you don't believe it?"

- We *always* have to specify an exposure model if we want to define causal effects.
- But! The framework permits exposure models of arbitrary generality.
- By definition, there exists a finite (but potentially very large) set of distinguishable exposure models that may be associated with any randomization scheme.
- These models can be nested in any arbitrary order. We can permit an arbitrarily large number of forms of interference in a series of nested models, all the way down to allowing exposure to be defined by the entire vector **Z**.
- We can even reject null hypotheses of no (or fewer forms of) interference if we pick up on effects.

Sensitivity analysis?

- Sensitivity analysis really isn't at play here, since causal parameters are not well defined if the exposure model is incorrect (or, rather, incomplete).
- Without theory, we don't have an estimand.
- But many, many theories may be jointly implemented in a complex exposure model. Even if some exposures are irrelevant, it's only an issue of efficiency.
- "Sensitivity analysis" is then permitting additional levels/types of exposure.

Some other thoughts / extensions

- Principal strata?
  - No reason why we couldn't *estimate* traits of the exposure model, even based on information revealed by treatment assignment.
- Incomplete network data?
  - Imputation model, integrating over  $\boldsymbol{\theta}$
- Observational studies?
  - If we can *estimate* the treatment assignment mechanism, then simple enough to specify an exposure model again.
- SUTVA?
  - Under proper specification, exposure model implies no interference.
  - Consistency assumption still necessary for external validity. With consistency, we satisfy SUTVA.

Conclusion:

- Exogeneity does not imply unbiasedness.
- Equal probability of assignment does not imply equal probability of exposure.
- Simple, nonparametric assumptions can clarify both questions and answers.