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Randomized experiments often involve treatments that may induce
“interference between units”
Interference: the outcome for unit i depends on the treatment
assigned to unit j . If we administer a treatment to unit j , what are
the effects on unit i?
Traditionally a nuisance, but now a topic of study – in the study of
spillovers, equilibrium adjustment, networks, etc.
Recent work in non-parametric inference focuses on hypothesis testing
or estimation in hierarchical (i.e., multilevel) interference settings. We
develop a theory of design-based estimation under general
interference.
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What’s out there?
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Figure  2:  Section  of  Village  with  geographical  clusters  

  

Notes:  The  solid  white  lines  delimit  a  geographical  cluster.  A  square  represents  the  location  of  a  T1  household,  a  star  
represents  a  T2  household  and  a  dot  represents  a  control  household  in  a  control  cluster.  A  triangle  represents  a  control  
household  in  a  treated  cluster  (either  T1  or  T2).    
  

(Giné & Mansuri, 2011)
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Yijt is the individual health or education outcome, where i refers to the school,
j to the student, and t ∈ {1!2} to the year of the program; T1it and T2it are indi-
cator variables for school assignment to the first and second year of deworming
treatment, respectively; and Xijt are school and pupil characteristics. Ndit is the
total number of pupils in primary schools at distance d from school i in year t,
and NT

dit is the number of these pupils in schools randomly assigned to de-
worming treatment. For example, in Sections 5 and 6, d = 03 denotes schools
that are located within three kilometers of school i, and d = 36 denotes schools
that are located between three to six kilometers away.25 Individual disturbance
terms are assumed to be independent across schools, but are allowed to be
correlated for observations within the same school, where the school effect is
captured in the ui term.

Since local population density may affect disease transmission, and since
children who live or attend school near treatment schools could have lower
environmental exposure to helminths, which would lead to less reinfection and
lower worm burdens, worm burden may depend on both the total number of
primary school pupils (Ndit) and the number of those pupils in schools ran-
domly assigned to deworming treatment (NT

dit) within a certain distance from
school i in year t of the program.26 Given the total number of children attend-
ing primary school within a certain distance from the school, the number of
these attending schools assigned to treatment is exogenous and random. Since
any independent effect of local school density is captured in the Ndit terms, the
γd coefficients measure the deworming treatment externalities across schools.
In this framework β1 + ∑

d(γdN
T

dit) is the average effect of the first year of de-
worming treatment on overall infection prevalence in treatment schools, where
N

T

dit is the average number of treatment school pupils located at distance d

from the school, and β2 + ∑

d(γdN
T

dit) is the analogous effect for the second
year of deworming. β1 and β2 capture both direct effects of deworming treat-
ment on the treated, as well as any externalities on untreated pupils within the
treatment schools.27

25Under spatial externality models in which a reduction in worm prevalence at one school
affects neighboring schools and this in turn affects their neighbors, some externalities would spill
over beyond six kilometers. To the extent that there are externalities beyond six kilometers from
the treatment schools, equation (1) yields a lower bound on treatment effects, but we think any
such spillovers are likely to be relatively minor in this setting.

26Since cross-school externalities depend on the number of pupils eligible for treatment rather
than the total number of pupils, we use the number of girls less than 13 years old and all boys (the
pupils eligible for deworming in the treatment schools) as the school population (Ndit and NT

dit)
for all schools in the remainder of the paper. Measurement error in GPS locations—due to U.S.
government downgrading of GPS accuracy until May 2000—leads to attenuation bias, making it
more difficult to find treatment externalities.

27Unfortunately, we do not have data on the location of pupils’ homes, and hence cannot
examine if pupils living near treatment schools actually obtain greater externality benefits.
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Health education had a minimal impact on behavior, so to the extent the
program improved health, it almost certainly did so through the effect of an-
thelmintics rather than through health education. There are no significant dif-
ferences across treatment and comparison school pupils in early 1999 in three
worm prevention behaviors: observed pupil cleanliness,22 the proportion of
pupils wearing shoes, or self-reported exposure to fresh water (Table V).

4. ESTIMATION STRATEGY

4.1. Econometric Specifications

Randomization of deworming treatment across schools allows estimation
of the overall effect of the program by comparing treatment and comparison
schools, even in the presence of within-school externalities.23 However, exter-
nalities may take place not only within, but also across schools, especially since
most people in this area live on their farms rather than being concentrated in
villages, and neighbors (and even siblings) often attend different schools since
there is typically more than one primary school within walking distance. Miguel
and Gugerty (2002) find that nearly one-quarter of all households in this area
have a child enrolled in a primary school which is not the nearest one to their
home. We estimate cross-school externalities by taking advantage of variation
in the local density of treatment schools induced by randomization. Although
randomization across schools makes it possible to experimentally identify both
the overall program effect and cross-school externalities, we must rely on non-
experimental methods to decompose the effect on treated schools into a direct
effect and within-school externality effect.

We first estimate program impacts in treatment schools, as well as cross-
school treatment externalities:24

Yijt = a+β1 · T1it +β2 · T2it +X ′
ijtδ+

∑

d

(γd ·NT
dit)+

∑

d

(φd ·Ndit)(1)

+ ui + eijt %

neighboring region of Western Kenya reported eating soil daily. Given the average amount of
soil children were observed eating daily, and the measured mean iron content of soil in this area,
Geissler et al. conclude that soil provides an average of 4.7 mg iron per day—over one-third of
the recommended daily iron intake for children. Unfortunately, geophagy could also increase
exposure to geohelminth larvae, promoting reinfection.

22This also holds controlling for initial 1998 levels of cleanliness, or using a difference-in-
differences specification.

23Manski (2000) suggests using experimental methods to identify peer effects. Other recent
papers that use group-level randomization of treatment to estimate peer effects include Duflo
and Saez (2002) and Miguel and Kremer (2002). Katz, Kling, and Liebman (2001), Kremer and
Levy (2001), and Sacerdote (2001) use random variation in peer group composition to estimate
peer effects.

24For simplicity, we present the linear form, but we use probit estimation below for discrete
dependent variables.

(Miguel & Kremer, 2004, 175-6)

Linear approximation of indirect exposure from to NT
di .

Requires extrapolation, since Pr(NT
di = n) = 0 for some i , n.

Even under generous assumptions, fixed effects would not aggregate
to ATE (Angrist & Pischke, 2009).
Subtle ratio estimation biases for finite samples.
Variance estimation? Not clear ex ante, given complex dependencies
between units.
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We provide a nonparametric design-based method for estimating
average causal effects, including (but not limited to):
Direct effect of assigning a unit to treatment
Indirect effects of, e.g., a unit’s peer being assigned to treatment
More complex effects (e.g., effect of having a majority of proximal
peers treated)
The researcher must have knowledge of two characteristics:

The design of the experiment. What is the probability profile over all
possible treatment assignments?
The exposure model. How do treatment assignments map onto actual
exposures, direct or indirect?

Methods are based on Horvitz-Thompson (HT) estimation (sample
theoretic).
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Method summary:
The analyst specifies an exposure model, converting vectors of
assigned treatments to vectors of actual exposures
The analyst computes the exact probabilities that each unit will
receive a given exposure
The probabilities yield a simple, unbiased estimator of average causal
effects
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What you should remember from this presentation, if nothing else:
Equal probability randomization does NOT imply equal probability of
exposure
Common naive methods ignoring these unequal probabilities (e.g.,
difference-in-means, regression) can lead to bias, even asymptotically
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To ground concepts, we provide a simple running example
Consider a randomized experiment performed on a finite population
of four units in a simple, fixed network:
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1 2 3 4
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One of these units is assigned to receive an campaign advertisement
and the other three are assigned to control, equal probability
We want to estimate the effects of advertising on opinion
There are four possible randomizations z:
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1 2 3 4
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1 2 3 4
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1 2 3 4
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1 2 3 4
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So we have exact knowledge of the randomization scheme.
But what of the exposure model? This requires researcher discretion.
How do we model exposure to a treatment?
One example.
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Direct exposure means that you have been treated.
Indirect exposure means that a peer has been treated.

Di =


Di(rect) : Zi = 1
In(direct) Zi±1 = 1
Co(ntrol) Zi = Zi±1 = 0.

There is nothing particularly special about this model, except for its
parsimony. Arbitrarily complex exposure models are possible.
Let’s visualize this.
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1 2 3 4
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1 2 3 4
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1 2 3 4
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1 2 3 4
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Summarizing:

Unit #

Ra
nd

.
#

1 2 3 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

Design Zi

−→

Unit #

Ra
nd

.
#

1 2 3 4
1 Di In Co Co
2 In Di In Co
3 Co In Di In
4 Co Co In Di

Exposure Di
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We can figure out the exact probabilities that each of the four units would
be in each of the exposure conditions:

Unit #

Ra
nd

.
#

1 2 3 4
1 Di In Co Co
2 In Di In Co
3 Co In Di In
4 Co Co In Di

Exposure Di
Unit #

1 2 3 4
Direct 0.25 0.25 0.25 0.25

Indirect 0.25 0.50 0.50 0.25
Control 0.50 0.25 0.25 0.50

Probabilties πi(Di)
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Neyman-Rubin model: potential outcome associated with each exposure,
but “fundamental problem of causal inference” in that we observe only one
potential outcome per unit.

If unit i receives exposure dk , outcome is Yi(dk).

Unit #
1 2 3 4 Mean

Direct 5 10 10 3 7
Indirect 0 3 3 2 2
Control 1 3 6 2 3

Potential outcomes Yi(Di)

Average causal effect: τ(dk , dl) =
1
N
∑N

i=1 [Yi(dk)− Yi(dl)].
E.g., τ(Direct,Control) = 1

N
∑N

i=1 [Yi(Direct)− Yi(Control)] = 4.
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Unequal probability design provides a natural, and design-unbiased
estimator. The Horvitz-Thompson (HT) estimator:

τ̂HT (dk , dl) =
1
N

N∑
i=1

[ I(Di = dk)

πi(dk)
Yi(dk)−

I(Di = dl)

πi(dl)
Yi(dl)

]

Unbiasedness is very easy to see.
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E
[

1
N

N∑
i=1

[ I(Di = dk)

πi(dk)
Yi(dk)−

I(Di = dl)

πi(dl)
Yi(dl)

]]
=

26 / 43



1
N

N∑
i=1

[E [I(Di = dk)]

πi(dk)
Yi(dk)−

E [I(Di = dl)]

πi(dl)
Yi(dl)

]
=
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1
N

N∑
i=1

[
πi(dk)

πi(dk)
Yi(dk)−

πi(dk)

πi(dl)
Yi(dl)

]
=
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1
N

N∑
i=1

[Yi(dk)− Yi(dl)] = τ(dk , dl)
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Unbiasedness follows from very clear assumptions:
How was the randomization administered? (known)
What is the exposure model? (assigned by analyst)
These assumptions are always being made, although often obscured
and/or inconsistent with the experimental design
Here, design and assumptions directly motivate the estimator
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E.g., for the first randomization z = (1, 0, 0, 0), we would observe:
Yi 5 3 6 2
Zi 1 0 0 0
Di Di In Co Co

πi(Di) 0.25 0.50 0.25 0.50

HT estimator:

τ̂HT (Di ,Co) = 1
4

[ 5
0.25 −

( 6
0.25 +

2
0.50

)]
= −2

.
Can also look at the difference in means estimator (logically
equivalent to an OLS regression of the outcome on treatment
dummies):

τ̂DM(Di ,Co) = 5
1 −

6 + 2
2 = 1

.
So let’s see how the HT estimator performs against the difference in
means estimator
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Across all randomizations,
Ra

nd
.

#

Diff. in Means τ̂HT (dk , dl)

1 1.00 -1.00 -2.00 -5.50
2 8.00 -0.50 9.00 0.50
3 9.00 1.50 9.50 3.00
4 1.00 1.00 -0.50 -2.00

E[.] 4.75 0.25 4.00 -1.00
Bias 0.75 1.25 0.00 0.00

τ(Di ,Co) τ(In,Co) τ(Di ,Co) τ(In,Co)
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The difference in means / OLS estimator is badly biased – in fact, in,
expectation, it even gets the sign wrong for the indirect effect
Not just a small sample problem – bias even in asymptopia.
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Inference:

Var (τ̂HT (dk , dl)) =
1

N2

{
Var [Ŷ T

HT (dk)] + Var [Ŷ T
HT (dl)]

−2Cov [Ŷ T
HT (dk), Ŷ T

HT (dl)]
}
,

where,

Var [Ŷ T
HT (dk)] =

N∑
i=1

N∑
j=1

Cov [I(Di = dk), I(Dj = dk)]
Yi(dk)

πi(dk)

Yj(dk)

πj(dk)

Cov [Ŷ T
HT (dk), Ŷ T

HT (dl)] =
N∑

i=1

N∑
j=1

Cov [I(Di = dk), I(Dj = dl)]
Yi(dk)

πi(dk)

Yj(dl)

πj(dl)
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Young’s inequality provides approximations for unidentified
components, and estimation proceeds using Horvitz-Thompson style
estimator.
In expectation, these approximations are conservative; and unbiased
under sharp null hypothesis of no effect (for many designs).
Asymptotic normality / conservative confidence intervals follow from
restrictions on clustering.
The paper contains “model-assisted” refinements for covariance
adjustment, weight stabilization and constant effects variance
estimation.
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Example: Paluck and Shepherd (2012)
(Rough) design:

Measured connections between 291 students with predeployment
survey (via listing of friends)
Identified 83 “key” individuals, randomized 30 into attending an
anti-bullying program
Measured behavioral and attitudinal outcomes for all 291 students

How to analyze?
Interested in both direct (effects of attending program) and indirect
effects (effects of peers attending program)
Heterogeneous (and sometimes zero) probabilities of exposure, implicit
clustering
Outcome variable (for illustration): teacher evaluations of behavior
(higher score = worse behavior)
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Example: Paluck and Shepherd (2012)
Consider the following exposure model:

Control: Not attending program, no peers in program
Direct: Attending program, no peers in program
Indirect: Not attending program, peers in program
Combined: Attending program, peers in program

Some complexities. Effects estimated will be “local” average
treatment effects.
Can use more/less complex exposure models
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Example: Paluck and Shepherd (2012)

Exposure Naive Regression HT
(Diff-in-Means) (Fixed Effects) (Ours!)

Direct -0.775 -0.752 -1.400
(SE) (0.793) (0.927) (1.133)

Indirect -0.382 -0.648 -0.607
(SE) (0.434) (0.596) (1.106)

Combined -1.331 -1.663 -1.792
(SE) (0.956) (1.220) (1.617)
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Anticipating some concerns, sensitivity analysis, & implications.
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Concern: “But you’re still specifying an exposure model! What if you
don’t believe it?”

We always have to specify an exposure model if we want to define
causal effects.
But! The framework permits exposure models of arbitrary generality.
By definition, there exists a finite (but potentially very large) set of
distinguishable exposure models that may be associated with any
randomization scheme.
These models can be nested in any arbitrary order. We can permit an
arbitrarily large number of forms of interference in a series of nested
models, all the way down to allowing exposure to be defined by the
entire vector Z.
We can even reject null hypotheses of no (or fewer forms of)
interference if we pick up on effects.
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Sensitivity analysis?
Sensitivity analysis really isn’t at play here, since causal parameters
are not well defined if the exposure model is incorrect (or, rather,
incomplete).
Without theory, we don’t have an estimand.
But many, many theories may be jointly implemented in a complex
exposure model. Even if some exposures are irrelevant, it’s only an
issue of efficiency.
“Sensitivity analysis” is then permitting additional levels/types of
exposure.
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Some other thoughts / extensions
Principal strata?

No reason why we couldn’t estimate traits of the exposure model, even
based on information revealed by treatment assignment.

Incomplete network data?
Imputation model, integrating over θ

Observational studies?
If we can estimate the treatment assignment mechanism, then simple
enough to specify an exposure model again.

SUTVA?
Under proper specification, exposure model implies no interference.
Consistency assumption still necessary for external validity. With
consistency, we satisfy SUTVA.
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Conclusion:
Exogeneity does not imply unbiasedness.
Equal probability of assignment does not imply equal probability of
exposure.
Simple, nonparametric assumptions can clarify both questions and
answers.
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