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Abstract

This paper presents randomization-based methods for estimating average causal
effects under arbitrary interference of known form. Conservative estimators of the
randomization variance of the average treatment effects estimators are presented, as is
justification for confidence intervals based on a normal approximation. Examples rele-
vant to research in environmental protection, networks experiments, “viral marketing,”
two-stage disease prophylaxis trials, and stepped-wedge designs are presented.

1 Introduction
Experimental and observational studies often involve treatments with effects that “inter-
fere” (Cox, 1958) across units through spillover or other forms of dependency. Such in-
terference is typically considered a nuisance, and researchers often strive to design studies
that isolate units as much as possible from the effects of the interference. However, such
designs are not always possible. Furthermore, researchers have become increasingly inter-
ested in estimation of the spillover effects themselves, as these effects may be of substantive
importance. Treatments may be applied to individuals in an existing network, and we may
wish to study how effects transmit to peers in the network. For example, an urban renewal
program applied to one town may divert capital from other towns, in which case the overall
effect of the program may be ambiguous. In these cases, we need a method to estimate
effects of both direct and indirect exposure to a treatment. Another form of interference
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occurs when there are multiple varieties of a treatment but these varieties are not explicitly
randomized. For example, there might exist two teams administering a treatment and the
teams could each have some probability of being the one to administer treatment to a given
unit. We may then want to know whether one team is more effective than another. Finally,
it may be that treatment effects are time-varying and units have some chance of receiving
treatment at any one of a set of points in time.

In this paper, we develop general, randomization-based methods for estimating aver-
age causal effects under these and other forms of interference. In so doing, we develop
a general framework for estimation and inference that naturally draws from the design of
the experiment. Interference represents a departure from the traditional randomized experi-
ment wherein units are randomly assigned directly to treatment or control and the potential
outcomes that would be observed for a unit in either the treatment or control condition are
fixed and do not depend on the overall set of treatment assignments. The latter condition
is what Rubin (1990) refers to as the “stable unit treatment value assumption” (SUTVA).
In the examples above, the traditional randomized experiment model is clearly inadequate,
as SUTVA would be violated. A more sophisticated model of treatment exposure must be
specified.

The estimators that we propose in this paper are simple and jointly leverage known
features of the design of a randomized experiment with an arbitrary model of indirect
exposure under which SUTVA is assured. They provide unbiased point estimates of the
average causal effects induced by treatment exposure. We also provide estimators for the
randomization variance of the estimated average causal effects. These variance estimators
are assured of being either conservative or unbiased. We then provide justification for the
use of large-sample confidence intervals based on a normal approximation.

Our contribution is novel and important in three ways. First, once a treatment “exposure
model” has been fixed, the methods we present are based entirely on known randomization
distributions that arise from the experiment’s design. Essentially, we use the randomization
plan defined by the experiment’s design to determine the probability of exposure for each
unit. We can use these probabilities to obtain estimates of average potential outcomes under
the different exposure conditions. No ancillary modeling assumptions are needed, although
in some cases they may be introduced to gain efficiency. Second, we move beyond ap-
proaches that presume both hierarchical treatment assignment and interference only within
groups at the lowest level of some hierarchy. As we discuss in the next section, nearly all
treatments of interference in the applied statistics literature presume this setting. However,
interference can come in many less structured forms. The methods that we propose are
general to a wide range of interference settings of which hierarchical settings are but one
example. Third, we provide a conservative basis for inference on estimated causal quanti-
ties. Our variance estimators are based directly on the randomization distribution and they
account for “non-measurability” problems. (Details on this issue are given below.) Un-
like measures of uncertainty that are based on either inverted exact tests or approximate
methods, our variance estimator is guaranteed to have a weakly positive bias.
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2 Related literature
Current results on estimation under interference focus on estimating group-level causal ef-
fects under “partial” interference. Rosenbaum (2007) discusses methods for testing sharp
null hypotheses in the presence of interference in trials where random assignment occurs
within groups and interference does not cross group boundaries. Sobel (2006) analyzes the
potential for bias in such settings when non-interference is mistakenly assumed, and then
defines a number of direct and indirect effects that, in principle, may be identifiable. Hud-
gens and Halloran (2008) extend this work to define direct, indirect, total, and overall causal
effects defined at the group level in two-stage randomized trials in which some groups are
randomly assigned to host treatments, and then treatments are assigned at random within
the selected groups. Interference is presumed to operate only within groups. These authors
provide randomization-based estimators for these group level effects. Tchetgen-Tchetgen
and VanderWeele (2010) extend Hudgens and Halloran’s results, providing conservative
variance estimators, a framework for finite sample inference, and extensions to observa-
tional studies.

Hierarchical treatment assignment, interference limited to within groups, and the es-
tablishment of group-level effects as the estimands greatly simplify the estimation prob-
lem. With this analytical framework, inference can proceed assuming independence across
groups, in which case we effectively obtain a completely randomized experiment on
groups. In some settings, however, such rigid hierarchical structuring may not be valid,
as in the case of experiments carried out over networks of actors that share links as a re-
sult of a complex, endogenous process. A key contribution of this paper is to generalize
estimation and inference theory to settings that exhibit arbitrary forms of interference and
treatment assignment dependencies. In addition, our inferential targets are unit-level causal
effects. Unit-level causal effects are often the estimand of primary interest, as is the case,
for example, when exploring unit-level characteristics associated with the magnitude of
treatment effects.

3 Treatment assignment and exposure models
The first step is to distinguish between (1) treatment assignments over the set of experi-
mental units and (2) each unit’s treatment exposure under a given assignment. Treatment
assignments can be manipulated arbitrarily with the experimental design. However, treat-
ment exposures may be constrained on the basis of the varying interference or heterogeneity
potential of different experimental units. For example, interference or spillover effects may
spread over a spatial gradient. If so, different treatment assignments may result in different
patterns of interference depending on where treatments are applied on the spatial plane.

Formally, suppose we have a finite population U of units indexed by i = 1, ...,N on
which a randomized experiment is performed. Define a treatment assignment vector, z =
(z1, ...,zN)

′, where zi ∈ {1, ..,M} specifies which of M possible treatment values that unit i
receives. An experimental design contains a plan for randomly selecting a particular value
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of z from the MN different possibilities with predetermined probability pz. Restricting
our attention only to treatment assignments that can be generated by a given experimental
design, define Ω = {z : pz > 0}, so that Z = (Z1, ...,ZN)

′ is a random vector with support
Ω and Pr(Z = z) = pz.

We define a unit-specific onto function that maps an assignment vector and unit specific
traits to an exposure value: f : Ω×Θ→ ∆, where θi ∈Θ quantifies relevant traits of unit i.
The codomain ∆ contains all of the sorts of treatment exposures (e.g., “direct” or “indirect”
exposure) that might be induced in the experiment. The contents of ∆ depend on the nature
of interference or treatment heterogeneity. These exposures may be represented as vectors,
discrete classes, or real numbers.

The estimation of causal effects under interference or treatment heterogeneity amounts
to using information about treatment assignments, which come from the experiment’s de-
sign, to estimate the effects of treatment exposures, which result from the interaction of the
design (captured by Z) and other underlying features of the population (captured by f and
the θis). The key step in estimating causal quantities under general interference or treat-
ment heterogeneity is in specifying f and ∆. These two elements constitute an exposure
model. In a traditional randomized experiment, the exposure model simplifies to one in
which we can set ∆ = {1, ...,M} and f (z,θi) = f (z) = zi for all i. This model has been the
workhorse for most causal effects estimation under the Neyman (1923)-Rubin paradigm.
An exposure model that allowed for arbitrary interference or treatment heterogeneity would
be one for which |∆|= |Ω|×N, in which case each unit has a unique type of exposure under
each treatment assignment, and f (z,θi) would be unique for each z. We can call this the
“arbitrary exposure” model. If such an exposure model were valid, then it is clear that there
would be no meaningful way to use the results of the experiment. We must use substantive
judgment to fix a model somewhere between the traditional randomized experiment and
arbitrary exposure models in order to carry out analyses under interference or treatment
heterogeneity.

Define Di≡ f (Z,θi), a random variable with support ∆i⊆∆ and for which Pr(Di = d)≡
πi(d). Note that because |∆| ≤ |Ω|×N, ∆ is a finite set of K ≤ |Ω|×N values, such that ∆=
{d1, ...,dK}. Then for each unit, i, we have a vector of probabilities, (πi(d1), ...,πi(dK))

′ =
π i. Invoking Imbens (2000)’s generalized propensity score, we call π i the generalized
probability of treatment (GPT) for i. A unit i’s GPT tells us the probability of i being
subject to each of the possible exposures in {d1, ...,dK}. Because f is onto,

πi(dk) = ∑
z∈Ω

I( f (z,θi) = dk)Pr(Z = z) = ∑
z∈Ω

pzI( f (z,θi) = dk).

Thus the GPT for unit i is known exactly, with each component probability, πi(dk), equal
to the expected proportion of treatment assignments that induce exposure dk for unit i.

Below, we will refer to joint exposure probabilities when discussing variance estima-
tors. That is, we define πi j(dk) as the probability of the joint event that both units i and
j are subject to exposure dk, and we define πi j(dk,dl) as the probability of the joint event
that units i and j are subject to exposures dk and dl , respectively. To compute both individ-
ual and joint exposure probabilities from the experiment’s design, first define the N×|Ω|
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matrix,

Ik = [I( f (z,θi) = dk)] z∈Ω

i=1,...,N
=


I( f (z1,θ1) = dk) I( f (z2,θ1) = dk) . . . I( f (zN ,θ1) = dk)
I( f (z1,θ2) = dk) I( f (z2,θ2) = dk) . . . I( f (zN ,θ2) = dk)

...
... . . .

I( f (z1,θN) = dk) I( f (z2,θN) = dk) I( f (zN ,θN) = dk)

 ,
which is a matrix of indicators for whether units are in exposure condition k over possible
assignment vectors. Define the |Ω|×|Ω| diagonal matrix P= diag(pz1, pz2, ..., pz|Ω|). Then,

IkPI′k =


π1(dk) π12(dk) . . . πN1(dk)
π12(dk) π2(dk) . . . πN2(dk)

...
... . . .

πN1(dk) πN2(dk) πN(dk)

 ,
is an N×N symmetric matrix with individual exposure probabilities, the πi(dk)’s, on the
diagonal and joint exposure probabilities, the πi j(dk)’s, on the off-diagonals. The non-
symmetric N×N matrix,

IkPI′l =


0 π12(dk,dl) . . . π1N(dk,dl)

π21(dk,dl) 0 . . . π2N(dk,dl)
...

... . . .
πN1(dk,dl) πN2(dk,dl) 0

 ,
yields all joint probabilities across exposure conditions k and l. The zeroes on the diagonal
are due to the fact that a unit cannot be subject to multiple exposure conditions at once.1

We have indicated that ∆i ⊆ ∆. That is to say that unit i may have zero probability
of being subjected to some subset of the K exposures. For example, under the arbitrary
exposure model, ∆i would contain only the |Ω| exposure types that apply to unit i, whereas
∆ would contain the |Ω| ×N exposure types that apply to all N units. Typically we will
work with an exposure model such that K� |Ω|×N. In fact, we may limit the number of
exposure types to only a handful for which all units have some non-zero chance of being

1In practice, |Ω| may be so large that it is impractical to construct Ω to compute the π is and the joint
probability matrices exactly. One may nonetheless approximate the π is and joint probabilities with arbi-
trary precision through replication (Fattorini, 2006). That is, produce R random replicate zs based on the
randomization plan. From these R replicates, we can construct an N×R indicator matrix, Îk, for each of
the k = 1, ...,K exposure conditions. Then an estimator for IkPI′k is Îk Î′k/R, and similarly for IkPI′l . The
replication procedure would be equivalent to drawing a random sample without replacement from Ω with
probabilities of selection equal to those which are defined in the randomization plan. As such, the resulting
exposure probability and joint probability estimates would be unbiased. Chen et al. (2010) apply a similar
approach.

5



subjected.2 (Recall that for the traditional randomized experiment, K = M.) But it may still
be the case that some units have zero probability of being subjected to some of the exposure
values. In the discussion below, we offer refinements to account for this possibility.

4 Average potential outcomes and causal effects
Current work on causal inference under interference expends considerable effort on defin-
ing various forms of “direct,” “indirect,” and “total” effects. The ability to estimate any
such effects depends on whether one is able to recover reliable estimates of average poten-
tial outcomes under the various treatment exposure conditions. We focus on the problem
of estimating average potential outcomes under each of the exposure conditions. With that,
the analyst is then free to compute arbitrary causal quantities of interest. Estimators for
the randomization variance of average effects estimates are developed in the section that
follows.

For the moment, we restrict attention to the case where all units have non-zero probabil-
ity of being subject to each of the K exposures. That is, 0 < πi(dk)< 1 for all i and k. (We
discuss the alternative case below.) Then, each unit i has K potential outcomes associated
with each of the K exposures, which we denote by {Yi(d1), ...,Yi(dK)}. We seek estimates
for all k of µ(dk) =

1
N ∑

N
i=1Yi(dk) =

1
NY T (dk), where Y T (dk) is the total of the potential

outcomes under dk.3 The number of units in the population, N, is fixed, but we cannot
estimate Y T (dk) directly, as we only observe Yi(dk) for those with Di = dk. However, by
design, the collection of units for which we observe Yi(dk) is a unequal-probability without-
replacement sample from {Y1(dk), ...,YN(dk)}, with the sampling probabilities known ex-
actly. By Horvitz and Thompson (1952), an unbiased estimator for Y T (dk) is given by the
inverse probability weighted estimator.

Ŷ T
HT (dk) =

N

∑
i=1

I(Di = dk)
Yi(dk)

πi(dk)
. (1)

With potential outcomes and the randomization plan fixed, the exact variance for Ŷ T
HT (dk)

2Nonetheless, sometimes the number of relevant exposures, K, is truly very large. Then, it may make
sense to specify a function that maps Di to a random variable D̃i that is governed by a “continuous” GPT
function, Pr(D̃i ≤ d) =

∫ d
−∞

π̃(x,θi;ψ)dx, where ψ parameterizes a probability density function, π̃(.). Com-
puting continuous GPT values cannot rely on the design alone, but rather requires the input of the analyst in
determining the appropriate density function. We do not consider continuous exposure models in this paper,
but note that their development could follow many of the same principles as the discrete exposure case that
we do consider.

3This construction owes greatly to Joel Middleton.
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is,

Var [Ŷ T
HT (dk)] =

N

∑
i=1

N

∑
j=1

Cov
[
I(Di = dk),I(D j = dk)

] Yi(dk)

πi(dk)

Yj(dk)

π j(dk)

=
N

∑
i=1

Var [I(Di = dk)]

[
Yi(dk)

πi(dk)

]2

+
N

∑
i=1

∑
j 6=i

Cov
[
I(Di = dk),I(D j = dk)

] Yi(dk)

πi(dk)

Yj(dk)

π j(dk)

=
N

∑
i=1

πi(dk)[1−πi(dk)]

[
Yi(dk)

πi(dk)

]2

+
N

∑
i=1

∑
j 6=i

[πi j(dk)−πi(dk)π j(dk)]
Yi(dk)

πi(dk)

Yj(dk)

π j(dk)
. (2)

The estimator for the mean of all N potential outcomes under exposure dk is thus,

µ̂HT (dk) = (1/N)Ŷ T
HT (dk), (3)

with exact variance,
Var(µ̂HT (dk)) = (1/N2)Var [Ŷ T

HT (dk)]. (4)

Then,

τ̂HT (dk,dl) = µ̂HT (dk)− µ̂HT (dl) =
1
N

[
Ŷ T

HT (dk)− Ŷ T
HT (dl)

]
estimates τ(dk,dl) =

1
N ∑

N
i=1 [Yi(dk)−Yi(dl)], the average causal effect of having all units

subject to exposure k versus having all units subject to exposure l. The exact variance of
the difference in estimated means is given by,

Var(τ̂HT (dk,dl)) =
1

N2

{
Var [Ŷ T

HT (dk)]+Var [Ŷ T
HT (dl)]−2Cov [Ŷ T

HT (dk),Ŷ T
HT (dl)]

}
, (5)

where (Wood, 2008),

Cov [Ŷ T
HT (dk),Ŷ T

HT (dl)] =
N

∑
i=1

N

∑
j=1

Cov
[
I(Di = dk),I(D j = dl)

] Yi(dk)

πi(dk)

Y j(dl)

π j(dl)

=
N

∑
i=1

∑
j 6=i

Yi(dk)

πi(dk)

Yj(dl)

π j(dl)

[
πi j(dk,dl)−πi(dk)π j(dl)

]
−

N

∑
i=1

Yi(dk)Yi(dl), (6)

with πi j(dk,dl) = Pr[I(Di = dk),I(D j = dl)], and the last line follows from the fact that
πii(dk,dl) = 0.
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Expressions (2) and (6) allow us to see the conditions under which exact variances are
identified. So long as all joint exposure probabilities are non-zero (that is, πi j(dk) > 0 for

all i, j), unbiased estimators for Var [Ŷ T
HT (dk)] are identified for the population U . Because

we only observe one potential outcome for each unit, the last term in (6) is always uniden-
tified, and thus Cov [Ŷ T

HT (dk),Ŷ T
HT (dl)] is always unidentified. This is a familiar problem

in estimating the randomization variance for the average treatment effect—e.g., Freedman
et al. (1998, A32-A34). If πi j(dk) = 0 for some i, j, Var [Ŷ T

HT (dk)] is unidentified. Simi-

larly, if πi j(dk,dl) = 0 for some i, j, then additional components of Cov [Ŷ T
HT (dk),Ŷ T

HT (dl)]

are unidentified.4 Nonetheless, we can always identify estimators for Var [Ŷ T
HT (dk)] and

Cov [Ŷ T
HT (dk),Ŷ T

HT (dl)] that are guaranteed to have weakly positive bias. Thus, we can al-
ways identify a conservative approximation to the exact variances. We take this and related
issues up in the next section.

5 Variance estimators
We derive conservative estimators for Var [Ŷ T

HT (dk)] and Var(τ̂HT (dk,dl)). Although not
necessarily unbiased, the estimators we present here are guaranteed to have a weakly posi-
tive bias relative to the randomization distributions of the estimated averages or effects.5

Then, given πi j(dk) > 0 for all i, j, the unbiased Horvitz-Thompson estimator for

Var [Ŷ T
HT (dk)] is,

V̂ar [Ŷ T
HT (dk)] = ∑

i∈U
∑
j∈U

I(Di = dk)I(D j = dk)
Cov

[
I(Di = dk),I(D j = dk)

]
πi j(dk)

Yi(dk)

πi(dk)

Y j(dk)

π j(dk)

= ∑
i∈U

I(Di = dk)[1−πi(dk)]

[
Yi(dk)

πi(dk)

]2

+ ∑
i∈U

∑
j∈U\i

I(Di = dk)I(D j = dk)
πi j(dk)−πi(dk)π j(dk)

πi j(dk)

Yi(dk)

πi(dk)

Yj(dk)

π j(dk)
.

(7)

Then an unbiased estimator for the variance of µ̂HT (dk) is given by,

V̂ar [µ̂HT (dk)] = (1/N2)V̂ar [Ŷ T
HT (dk)].

In the case where πi j(dk) = 0 for some i, j, there exist no unbiased estimators for

Var [Ŷ T
HT (dk)]. As demonstrated in Aronow and Samii (2011, Proposition 1), the bias of

4In this case, expression (6) can be further refined to account for the zero pairwise probabilities. We
examine this scenario in the next section.

5If any units i, j appear as co-members of a cluster (i.e., Pr(Di = D j) = 1), then there are advantages to
totaling these units’ outcome values, Yi(dk) and Yj(dk), into one larger unit before variance estimation. We
discuss this refinement in Appendix A below.
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V̂ar [µ̂HT (dk)], is given by,

A = ∑
i∈U

∑
j∈{U\i:πi j(dk)=0}

Yi(dk)Yj(dk).

Thus, V̂ar [µ̂HT (dk)] is guaranteed to have weakly positive bias when Yi(dk)Yj(dk) ≥ 0 for
all i, j with πi j(dk) = 0, and the bias will be small when the terms in the sum tend to offset
each other.6 Another option is to use the following correction term (derived via Young’s
inequality):

Â2(dk) = ∑
i∈U

∑
j∈{U\i:πi j(dk)=0}

[
I(Di = dk)Yi(dk)

2

2πi(dk)
+

I(D j = dk)Yj(dk)
2

2π j(dk)

]
,

noting that Â2(dk) = 0 if πi j(dk)> 0 for all i, j. By Aronow and Samii (2011, Corollary 2),

E
[
V̂ar [Ŷ T

HT (dk)]+ Â2(dk)
]
≥ Var [Ŷ T

HT (dk)],

in which case,
V̂ar A[µ̂HT (dk)] = (1/N2)

[
V̂ar [Ŷ T

HT (dk)]+ Â2(dk)
]
,

provides an either unbiased or weakly conservative estimator for the variance of the esti-
mated average of potential outcomes under exposure dk.

As discussed above, Cov [Ŷ T
HT (dk),Ŷ T

HT (dl)] is unidentified, which is to say that there
exist no unbiased or consistent estimators for this quantity. However, we can com-
pute an approximation that is guaranteed to have expectation less than or equal to the
true covariance, providing a conservative (i.e., weakly positively biased) estimator for
Var(τ̂HT (dk,dl)). For the case where πi j(dk,dl) > 0 for all i, j such that i 6= j, we pro-
pose the following Horvitz-Thompson-type estimator for the covariance,

Ĉov [Ŷ T
HT (dk),Ŷ T

HT (dl)] = ∑
i∈U

∑
j∈U\i

I(Di = dk)I(D j = dl)

πi j(dk,dl)

Yi(dk)

πi(dk)

Yj(dl)

π j(dl)

−∑
i∈U

[
I(Di = dk)Yi(dk)

2

2πi(dk)
+

I(Di = dl)Yi(dl)
2

2πi(dl)

]
. (8)

The term on the second line in expression (8) has expected value less than or equal to the
quantity in the last line of expression (6), again via Young’s inequality. This estimator
is exactly unbiased if, for all i ∈ U , Yi(dl) = Yi(dk), implying no effect associated with
condition l relative to condition k. For the case where πi j(dk,dl) = 0 for some i, j and k, l,
we can refine the expression for the covariance given in (6) to be,

Cov [Ŷ T
HT (dk),Ŷ T

HT (dl)] = ∑
i∈U

∑
j∈{U\i:πi j(dk,dl)>0}

Yi(dk)

πi(dk)

Yj(dl)

π j(dl)
[πi j(dk,dl)−πi(dk)π j(dl)]

−∑
i∈U

∑
j∈{U :πi j(dk,dl)=0}

Yi(dk)Y j(dl), (9)

6This notation requires that we maintain the assumption that 0
0 = 0. Aronow and Samii (2011) provide

simulations showing a variety of cases when A is very large and other cases when it is close to zero.
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where the term on the last line subsumes the term on the last line in expression (6). This
leads us to propose a more general estimator for the covariance,

Ĉov A[Ŷ T
HT (dk),Ŷ T

HT (dl)] = ∑
i∈U

∑
j∈{U\i:πi j(dk,dl)>0}

I(Di = dk)I(D j = dl)

πi j(dk,dl)

Yi(dk)

πi(dk)

Y j(dl)

π j(dl)

−∑
i∈U

∑
j∈{U :πi j(dk,dl)=0}

[
I(Di = dk)Yi(dk)

2

2πi(dk)
+

I(D j = dl)Yj(dl)
2

2π j(dl)

]
.

(10)

Again, the term in the last line in (10) has expected value no greater than the term in the
last line of (9) by Young’s inequality.

Combining expressions, a conservative variance estimator for Var(τ̂HT (dk,dl)) is given
by,

V̂ar [τ̂HT (dk,dl)] =
1

N2

{
V̂ar [Ŷ T

HT (dk)]+ Â2(dk)+ V̂ar [Ŷ T
HT (dl)]+ Â2(dl)

−2Ĉov A[Ŷ T
HT (dk),Ŷ T

HT (dl)]
}
. (11)

6 Asymptotics and intervals
Consistency and confidence intervals are always defined relative to some notion of asymp-
totic growth. We adopt a conceptualization of asymptotic growth, based on Brewer (1979),
that is analogous to obtaining estimates by aggregating results from repeated experimenta-
tion (or sampling, as the case may be) on a fixed finite population. Suppose that the original
population, U , is replicated B− 1 times, yielding B copies of U , indexed by b = 1, ...,B.
Each of the B subpopulations hosts its own realization of Z(b) to which the exposure model
is applied, generating B separate realizations of I(b)k , independent across the B subpopu-
lations. The B subpopulations are collected into a population of BN units, and estimates
are produced using values from this population. We let B tend to infinity. The concep-
tualization is simple to visualize, embeds straightforward moment assumptions (e.g., po-
tential outcomes are bounded given finite U), and allows us to treat the I(b)k as iid over
b = 1, ...,B.7 Consistency of µ̂HT (dk) and τ̂HT (dk,dl) follow straightforwardly from the
weak law of large numbers. Asymptotic normality for µ̂HT (dk) and τ̂HT (dk,dl) follows
from the classical central limit theorem (Lehmann, 1999, p. 73).

7We have studied results based on weaker assumptions on the asymptotic growth process, namely, (i)
bounded potential outcomes, (ii) bounded exposure probabilities, and (iii) constraints on the level of correla-
tion between exposure indicators as the finite population N→ ∞. The constraints on the level of correlation
between exposure indicators assumes an N×N dependency matrix for each exposure condition, where each
slot represents non-zero correlation in exposure conditions. We assume that the sum on any row or column
of this matrix is bounded above by a fixed m. Under these assumptions, consistency of the mean and vari-
ance estimators above can be established, and an analogy to central limit theorems for bounded m-dependent
series would seem to justify asymptotic normality (Hoeffding and Robbins, 1948; Mittelhammer, 1996, pp.
281-282), although demonstrating this definitively is beyond the scope of this paper.
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To establish normal approximation confidence intervals for the estimated causal effect,
τ̂HT (dk,dl), consider the limiting behavior of V̂ar [τ̂HT (dk,dl)]. Define

V̂ar [Ŷ T
HT (dk)− Ŷ T

HT (dl)]≡ N2V̂ar [τ̂HT (dk,dl)].

Based on the properties of the conservative variance and covariance estimators given above,
define on the population U ,

V̄U ≡N2E
{

V̂ar [τ̂HT (dk,dl)]
}
=E

{
V̂ar [Ŷ T

HT (dk)− Ŷ T
HT (dl)]

}
≥Var

[
Ŷ T

HT (dk)− Ŷ T
HT (dl)

]
.

Now, under the asymptotic growth process that we have established,

NBV̂ar [τ̂HT (dk,dl)] =
1

NB

B

∑
b=1

V̂ar [Ŷ T
HT

(b)
(dk)− Ŷ T

HT

(b)
(dl)]

=
1
B

B

∑
b=1

V̂ar [Ŷ T
HT

(b)
(dk)− Ŷ T

HT

(b)
(dl)]

N
p−→ V̄U

N
,

where the simple summation in the first line is due to the independence of the I(b)k and the
last line follows from the weak law of large numbers. This establishes that the variance
estimator for the average causal effect converges to a quantity that is at least as large as the
true variance. Finally, define,

t =
τ̂HT (dk,dl)− τHT (dk,dl)√

V̂ar [τ̂HT (dk,dl)]
=

τ̂HT (dk,dl)− τHT (dk,dl)√
Var [τ̂HT (dk,dl)]

(
Var [τ̂HT (dk,dl)]

V̂ar [τ̂HT (dk,dl)]

)1/2

.

Under the given conditions,
(
τ̂HT (dk,dl)− τHT (dk,dl)

)
/
√

Var [τ̂HT (dk,dl)]
is asymptotically N(0,1) by the classical central limit theorem, while
(Var [τ̂HT (dk,dl)]/V̂ar [τ̂HT (dk,dl)])

1/2 converges to a quantity less than one. There-
fore, t is asymptotically normal, and intervals constructed as

τ̂HT (dk,dl)± z1−α/2

√
V̂ar [τ̂HT (dk,dl)]

will tend to cover τHT (dk,dl) at least 100(1−α)% of the time for large B.

7 Zero exposure probabilities
So far we have restricted attention to the case where all units have a non-zero probability
of being subject to any of K exposure conditions. To the extent possible, this is something
that one should try to ensure when designing an experiment. But in some cases, there may
be no way to avoid having some units with zero probability of being subject to some of the
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exposure conditions. For example, in a spatial experiment, when an exposure is defined
as the number of directly treated units within some radius, then a unit with no neighbors
within this radius has zero probability of indirect exposure, even though this may not be
the case universally.

Without making any assumptions about the functional form of exposure effects, the
problem of zero exposure probabilities is side-stepped entirely only if we redefine the
population on which we are estimating effects. When πi(dk) = 0, then the potential
outcome Yi(dk) can never be observed in the experiment, and so any quantity involving
Yi(dk) is unidentified without making auxiliary assumptions. Thus, causal effects associ-
ated with exposure dk are unidentified for the full population U . Estimation in the man-
ner presented in the preceding section must be restricted to the subpopulation of units
for which exposures probabilities are non-zero. To compute an average causal effect of
exposure k relative to exposure l, we would proceed by defining a new subpopulation,
Ukl = {i∈U : πi(dk)> 0 and πi(dl)> 0}, and estimation would proceed as above. All car-
dinalities from the full population, e.g, N = |U |, would be replaced by cardinalities from the
subpopulation, N = |Ukl|. The joint exposure probability matrices and outcome data would
be reconfigured to exclude rows and columns associated with units for which πi(dk) = 0
or πi(dl) = 0. The estimated effects could be considered as “local” average effects for the
subpopulation, Ukl .

8 Refinements
The mean and difference-in-means estimators presented thus far are unbiased by sample
theoretic arguments, and we have derived conservative variance estimators. However, we
may wish to improve efficiency by incorporating auxiliary covariate information. In addi-
tion, by analogy to results from the unequal probability sampling literature, other forms of
inverse probability weighting may significantly reduce mean square error with little cost in
terms of bias (Särndal et al., 1992, pp. 181-184). Finally, by imposing working assump-
tions about the nature of treatment effects (e.g., constant effects), variance calculations are
simplified, leading to estimators that may provide reasonable coverage while being more
stable and potentially less biased than those based on conservative approximations. We
discuss such refinements in the subsections that follow.

8.1 Covariance adjustment
Auxiliary covariate information may help to improve efficiency. A first method of co-
variance adjustment is based on the so-called “difference estimator” (Raj, 1965; Särndal
et al., 1992, Ch. 6). Covariance adjustment of this variety can reduce the randomization
variance of the estimated exposure means and average causal effects without compromis-
ing unbiasedness. In addition, the difference estimator addresses the problem of location
non-invariance that afflicts Horvitz-Thompson-type estimators (Fuller, 2009, 9-10). The
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estimator requires prior knowledge about how outcomes relate to covariates, perhaps ob-
tained from analysis of auxiliary datasets.

Assume an auxiliary covariate vector Xi is observed for each i. We have some
predefined function g(Xi,ξi(dk)) → R, where ξi is a parameter vector. Ideally g(.)
is calibrated on auxiliary data to produce values that approximate Yi(dk). We assume
Cov [g(Xi,ξi(dk)) ,Zi] = 0 as a sufficient condition for unbiasedness.8 Define

Ŷ T
G (dk) =

N

∑
i=1

I(Di = dk)
Yi(dk)

πi(dk)
−

N

∑
i=1

I(Di = dk)
g(Xi,ξi(dk))

πi(dk)
+

N

∑
i=1

g(Xi,ξi(dk)) , (12)

which is unbiased for Y T (dk) by,

E

[
−

N

∑
i=1

I(Di = dk)
g(Xi,ξi(dk))

πi(dk)
+

N

∑
i=1

g(Xi,ξi(dk))

]
= 0.

Define Gi(dk) = Yi(dk)−g(Xi,ξi(dk)). Then, by substitution,

Ŷ T
G (dk) =

N

∑
i=1

I(Di = dk)
Gi(dk)

πi(dk)
+

N

∑
i=1

g(Xi,ξi(dk)) . (13)

Estimation proceeds as above using Ŷ T
G (dk) in place of Ŷ T (dk) to estimate Y T (dk). In Ap-

pendix B, we demonstrate that Ŷ T
G (dk) is location invariant. Variance estimation proceeds

as in section 5, using Gi(dk) in place of Yi(dk) so long as g(Xi,ξi(dk)) is fixed.
An approximation to the difference estimator is given by regression adjustment using

the sample at hand. Regression can be thought of as a way to automate selection of the
parameters in the difference estimator. In doing so, unbiasedness is compromised although
the regression estimator is typically consistent (Särndal et al., 1992, pp. 225-239). As a
general operating principle, we may use weighted nonlinear least squares to estimate a sen-
sible parameter vector. For some common experimental designs, the least squares criterion
will be optimal (Lin, 2011), and weighting by 1/πi(dk) ensures that the regression proceeds
on a sample representative of the population of potential outcomes. With additional details
on Ik and g(.), it is possible to estimate optimal parameter vectors (Särndal et al., 1992,
219-244), though such values will typically be close to those produced by the weighted
nonlinear least squares estimator (barring unusual and extreme forms of clustering).

Define an estimated parameter vector associated with exposure condition dk,

ξ̂ (dk) = arg min
ξ (dk)

∑
i:Di=dk

1
πi(dk)

[Yi(dk)−g(Xi,ξ (dk))]
2 ,

8This allows for the possibility that ξi(dk) is a random variable. The condition ξi(dk) ⊥⊥ Di is also a
sufficient condition for unbiasedness. Aronow and Middleton (2011) provide greater discussion of conditions
for unbiased effect estimation and conservative variance estimation.
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where g(.) is the specification for the regression of Yi(dk) on I(Di = dk) and Xi. Then the
regression estimator for the total is given by,

Ŷ T
R (dk) =

N

∑
i=1

I(Di = dk)
Yi(dk)−g

(
dk,Xi, ξ̂ (dk)

)
πi(dk)

+
N

∑
i=1

g
(

dk,Xi, ξ̂ (dk)
)
, (14)

Estimation proceeds as above using Ŷ T
R (dk) in place of Ŷ T

HT (dk) to estimate Y T (dk). Under
weak regularity conditions on g(.), a variance estimator may be produced using a Taylor
linearized form of Ŷ T

R (dk) (Särndal et al., 1992, 236-237).

8.2 Hajek ratio estimation
The Hajek (1971) ratio estimator is a refinement of the standard Horvitz-Thompson es-
timator that often facilitates efficiency gains at the cost of some finite sample bias and
complications in variance estimation. Let us first consider the problem that the Hajek esti-
mator is designed to resolve. The high variance of µ̂HT (dk) is often driven by the fact that
some randomizations may yield an unusually large or small number of units or, depending
on the nature of Ik, an unusually large or small number of units with high values of the
weights 1/πi(dk). The Hajek refinement allows the denominator of the estimator to vary
according to the sum of the weights 1/πi(dk), thus shrinking the magnitude of the estimator
when its value is large, and raising the magnitude of the estimator when its value is small.

µ̂H(dk) =
∑

N
i=1 I(Di = dk)

Yi(dk)
πi(dk)

∑
N
i=1 I(Di = dk)

1
πi(dk)

. (15)

Note that E [∑N
i=1 I(Di = dk)

1
πi(dk)

] = N, so that the Hajek estimator is the ratio of two
unbiased estimators. It is well known that the ratio of two unbiased estimators is not an
unbiased estimator of the ratio. However, the bias will tend to be small relative to the
estimator’s sampling variability, and we may place bounds on its magnitude.

By Hartley and Ross (1954) and Särndal et al. (1992, 176),

∣∣E [µ̂H(dk)]−µ(dk)
∣∣≤
√√√√Var

(
1
N

N

∑
i=1

I(Di = dk)
1

πi(dk)

)
Var

(
µ̂H(dk)

)
Under the asymptotic growth process hypothesized in section 6, both variances will con-
verge to zero, and thus the bias (and, in fact, bias ratio) will converge to zero. Variance
estimation again proceeds via Taylor linearization.

8.3 Constant effects variance estimation
Although the variance estimators proposed in section 5 are guaranteed to be conservative,
the estimators may be imprecise or highly biased when A is large. An alternative approach
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is to maintain a hypothesis of constant effects in order to derive a variance estimator. Such
an estimator may be considerably more precise (as it pools variance across exposure con-
ditions) and less biased, although the bias may be of unknown sign. For construction of
confidence intervals, particularly in small experiments, such efficiency gains may be desir-
able.

To construct an approximate variance estimator, we may impute the full set of po-
tential outcomes using the observed outcomes and estimated treatment effects. The im-
puted potential outcome under exposure dk for unit i, Ŷi(dk) = Yi(dl)+ τ̂HT (dk,dl),∀i,k, l.
We then substitute Ŷi(dk) for Yi(dk) in equation 5, and derive the estimator’s variance
using the imputed potential outcomes. Then the constant effects variance estimator,
V̂arCE(τ̂HT (dk,dl)) =

1
N2

 N

∑
i=1

πi(dk)[1−πi(dk)]

[
Ŷi(dk)

πi(dk)

]2

+
N

∑
i=1

∑
j 6=i

[πi j(dk)−πi(dk)π j(dk)]
Ŷi(dk)

πi(dk)

Ŷj(dk)

π j(dk)

+
N

∑
i=1

πi(dl)[1−πi(dl)]

[
Ŷi(dl)

πi(dl)

]2

+
N

∑
i=1

∑
j 6=i

[πi j(dl)−πi(dl)π j(dl)]
Ŷi(dl)

πi(dl)

Ŷj(dl)

π j(dl)

+
N

∑
i=1

∑
j 6=i

Ŷi(dk)

πi(dk)

Ŷj(dl)

π j(dl)

[
πi j(dk,dl)−πi(dk)π j(dl)

]
−

N

∑
i=1

Ŷi(dk)Ŷi(dl)

}
.

Results for this estimator (including equivalencies to alternative, common estimators) are
established in Samii and Aronow (2012) in the case of complete random assignment of a
binary treatment variable. We have preliminary results for an arbitrary design suggesting
that, under modest regularity conditions, V̂arCE is consistent if effects are indeed constant,
though its properties are not as well established in the case of varying treatment effects.

9 Illustrations
Externalities, spill-over effects, carry-over effects, and treatment heterogeneity are ubiqui-
tous in social scientific settings. Available methods either suppress consideration of that
fact, accepting some bias in the estimation of unit-level causal effects for the sake of sim-
plicity, or this issue is handled by defining causal effects at the group level, where wholly
untreated groups provide a baseline condition (a “uniformity trial”, cf. Rosenbaum (2007)).
In this paper, we have shown how careful selection of an exposure model, combined with
known information about direct treatment assignment, allows for consistent estimation of
unit level causal effects associated with various forms of “indirect” exposure. These meth-
ods provide a principled basis for estimation any time one “indirectly” randomizes the
assignment of units to exposure conditions, a situation that arises in a broad range of sce-
narios of substantive interest. We provide illustrations in the subsections below.
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9.1 Spatial spillover in an environmental protection experiment
An interesting set of applications comes from when the effects of experimental treatments
have the potential to transmit over space or through networks, and treatments are allocated
to point locations in the space or network. For example, consider an environmental protec-
tion experiment in which forest monitoring stations are positioned at fixed points around the
perimeter of a protected forest.9 The goal is to determine an optimal allocation of monitor-
ing stations so as to reduce risks (such as illegal cutting) sufficiently while not committing
excessive resources. In this case, the units of analysis are segments of the forest, and ex-
posure might be defined in terms of whether the segment centroid very close, moderately
close, or far from the nearest monitoring station. In most cases, there will be irregularities
in the places where stations could be established as well as irregularities in the spacing and
orientation of the segments. For this reason, some segments may be in close proximity to
multiple potential stationing points, whereas other may be in close proximity to only a few.
Suppose the research design randomly selects M out of S potential locations to receive a
monitoring station. Then, a forest segment’s probability of being very close, moderately
close, or far from a monitoring station will be determined by the combination of this ran-
dom assignment (Z) and the segment’s location relative to the different potential stationing
sites (θi). Using the methods above, one could generate the set of all stationing possibili-
ties, record the exposure profile of the segments for each of the stationing possibilities, and
then empirically determine the GPTs for each segment.

9.2 Network persuasion experiments
Another example of this sort comes from experiments with “viral” marketing and network
persuasion campaigns, where the goal is to assess the effectiveness of different types of
messages in inducing a cascade of persuasion to get people to support some position, pur-
chase a product, or adopt a technology (Chen et al., 2010; Aral and Walker, 2011; Paluck,
2011). In this case, we might have baseline information on the network of communication
and friendship ties between individuals. An exposure model might define exposures such
as direct exposure to the message, indirect exposure by having a linked peer receive the
message, or no direct or indirect exposure of this kind. Then, the first order and second
order effects of the campaign can be measured in terms of contrasts between the last condi-
tion and each of the first and second conditions, respectively. In this case, if direct exposure
(Z) is assigned via a uniform random assignment mechanism, then a unit’s probability of
indirect exposure will depend on the number of ties that the unit has to others in the net-
work (θi), and this in turn will affect that unit’s probability of no exposure. The results of
an experiment such as this could help to determine how much direct exposure is needed to
induce the desired overall level of persuasion.

9The example is based on an actual evaluation in which the authors have been involved.
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9.3 Multi-stage trials with grouped interference
As discussed above, Hudgens and Halloran (2008) and Tchetgen-Tchetgen and Vander-
Weele (2010) develop methods for estimating causal effects under “partial” interference in
two-stage randomized trials of disease prophylaxis treatments. Interference due to disease
transmission across units is presumed to be limited to taking place within, and not between,
groups, and direct treatment is withheld altogether for some groups. Two-stage trials of
this sort combine issues associated with interference and cluster-level randomization. The
methods developed here straightforwardly accommodate both of these issues. For exam-
ple, consider a two-stage trial, where groups are first assigned to be either treatment sites
or control sites with probabilities (λ ,1−λ ), respectively, and then units within treatment
sites are assigned to receive treatment with probability γ . Then, a reasonable exposure
model might assume three exposure conditions: (i) control site, (ii) treated site, but no
treatment, (iii) treated site with treatment. Identification of causal effects under this model
is straightforward, as the design yields homogenous GPTs equal to (1−λ ,λ (1− γ),λγ),
respectively, for all units. Inference for effect estimates is complicated by the clustered
nature of the treatment assignment: for units i, j in the same group, πi j(dk,dl) = 0, for
dk 6= dl . This adds an additional complication to estimating (6). The issue was noted by
Hudgens and Halloran (2008). The theoretical development above provides a way to gain
additional traction on the problem. The solution we propose above is to use the conserva-
tive approximation given in (10) or to use the constant effects variance estimator.

9.4 Dynamic experiments
Dynamic experiments have time-varying treatment assignments. Exposure in this context
could be defined in terms of a unit’s treatment history. A prominent example of a dynamic
experiment is the “stepped-wedge” design, in which there are a fixed number of periods,
and in each period, some proportion of non-treated subjects are permanently assigned to
treatment for all future periods. Outcomes are observed for all subjects in each period,
so that the unit of inference is the subject-period. For analyzing per-period effects, one
would want to account for possible interference due to effects from a subject’s assign-
ment in previous periods carrying over into the current period. For example, suppose a
stepped-wedge experiment with three periods. An exposure model in this case might de-
fine, ∆1 = {(1,1,1),(0,1,1),(0,0,1),(0,0,0)}, to define treatment initiated in periods 1, 2,
3, or never, respectively. Then, simple random assignment to each of these three exposure
conditions provides for very straightforward identification and inference. Suppose, how-
ever, that there is good reason to believe that carry-over effects are likely to last only one
period. The analyst then may use an alternative exposure model, ∆2 = {(1,1),(0,1),(0,0)},
to indicate two consecutive periods of exposure, only one period of exposure, and no ex-
posure, respectively. If the experiment randomly assigned the histories enumerated in ∆1,
then the probabilities of assignment to the conditions in ∆2 would vary over the ∆1 condi-
tions. Brown and Lilford (2006) review applications of stepped-wedge designs in medical
research, and Gerber et al. (2011) is an application from political science.
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10 Conclusion
We have proposed methods for estimating average causal effects under general, but known,
forms of interference. Our approach combines a known randomization process with the
analyst’s model of treatment exposure, thus permitting inference under clear and defensi-
ble assumptions. Importantly, the union of the design of the experiment and the exposure
model may imply unequal probabilities of exposure and forms of dependence between units
that may not be obvious ex ante. In constructing parsimonious estimators that naturally
account for such complications, we have demonstrated how obtaining reliable causal infer-
ence may depend critically on the joint role of randomization and modeling assumptions,
however minimal.

We develop estimators based on results from the literature on unequal probability sam-
pling rooted in the foundational insights of Horvitz and Thompson (1952). The estimators
are clearly derived from the known sampling distribution of the “direct” treatment, Z, and
provide a basis for unbiased effect estimation and weakly conservative variance estimation.
Normal approximation intervals straightforwardly characterize the distribution of the effect
estimates for a setting analogous to the aggregation of results from repeated experimenta-
tion on a fixed population. Nonetheless, it is well known that Horvitz-Thompson-type esti-
mators may be volatile in cases where selection probabilities vary greatly or exhibit strong
inverse correlation with outcome values (Basu, 1971). Thus, we provide refinements that
allow for variance control via covariance adjustment and Hajek estimation. In addition, we
provide a method of variance estimation based on hypotheses of the nature of causal effects
which may be preferred when design-based estimators are unstable.

Some readers may raise objections or have concerns about how the methods proposed
here rely on an exposure model. Does this not introduce arbitrariness to the analysis? The
question is misguided: there is no escaping specification of exposure models for causal
analysis. Consider the classical approach to inference under the Neyman-Rubin model.
Here, analysts typically assume a very specific exposure model—namely, one that assumes
no interference relative to unit-level treatment assignments. This typical Neyman-Rubin
model is nested within more general exposure models that allow for some forms of inter-
ference, which are in turn nested within other exposure models that place fewer restrictions
on the form of the interference. Our approach permits estimation and testing under an ar-
bitrarily general exposure model. Generally speaking, unless |∆| = |Ω| ×N, the analyst
may always estimate average potential outcomes under a less restrictive exposure model
that allows for additional forms of interference, thus allowing for the enumeration of addi-
tional potential outcomes. Then the analyst may test for significant differences between the
hypothesized potential outcomes and those associated with a nested model. Rejection of
the null hypothesis of no mean difference between potential outcomes provides support for
the more complex exposure model.10 While issues of model specification may be unavoid-

10A related issue arises when one thinks that one has the appropriate form of the exposure model but
one is uncertain about certain structural features that precisely determine a unit’s exposure probabilities. A
concrete example comes from experiments on social networks. Suppose we assign a treatment to people in a
network and we expect that those directly tied to the treated people will receive a meaningful dose of indirect
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able, the proposed framework allows for inference under arbitrarily flexible (and testable)
assumptions on the exposure model.

To summarize, our approach combines a limited set of modeling assumptions with
randomization-based estimation and may be characterized as a design consistent, but also
“model assisted,” approach to causal effect estimation, similar in spirit to Särndal et al.
(1992)’s approach to general survey sampling. It is an alternative to parametric approaches
that are often employed with little substantive justification for all of the modeling assump-
tions. These methods greatly extend the reach of randomization-based estimation of causal
effects, allowing researchers to explore causal effects on units other than those for which
treatment is manipulated directly. Our illustrations suggest that number of substantively
important applications is vast.

exposure. The problem may be that we do not know for sure the links between people. Such uncertainty
could be formalized in terms of a probability distribution over the θi’s, in which case one could marginalize
over a range of estimates that first condition on a set of θi’s. Such is beyond the scope of this paper, but for a
related approach based on parametric data augmentation, see Chandrasekhar and Lewis (2012).
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Appendix

A Equivalence of using combined clusters

We rewrite Ŷ T
HT (dk) to account for clustering in exposure. While the treatment ef-

fect estimators are identical, such a notational switch will allow us to simplify and re-
duce the bias of our eventual variance estimators.) Noting that if, for some units i, j,
ρ
(
I(Di = dk),I(D j = dk)

)
= ρi j(dk,dk) = 1, then the total estimators may be equiva-

lently rewritten. Define Mm ∈M as the set of unit indices i, j that satisfy ρi j(dk,dk) = 1,
where I′(Dm = dk) is indexed over all |M| unique random variables in {I(Di = dk) : i =
(1,2, ...,N)}. Define π ′m(dk) as the value of πi(dk),∀i ∈Mm. Joint probabilities π ′kl(dk,dl)
are defined analogously. Given these definitions, we can rewrite the HT estimator of the
total of treatment potential outcomes as

Ŷ T
HT (dk) =

N

∑
i=1

1
πi

I(Di = dk)Yi(dk) =
|M|

∑
m=1

∑
i∈Mm

1
πi(dk)

I(Di = dk)Yi(dk)

=
|M|

∑
m=1

∑
i∈Mm

1
π ′m(dk)

I′(Dm = dk)Yi(dk) =
|M|

∑
m=1

1
π ′m(dk)

I′(Dm = dk) ∑
i∈Mm

Yi(dk)

=
|M|

∑
m=1

1
π ′m(dk)

I′(Dm = dk)Y ′m(dk),

where Y ′m(dk) = ∑
i∈Mm

Yi(dk). Since clustered units will always be observed together, they

can be summed prior to estimation. The equivalency of these totaled and untotaled HT
estimators serves as the basis for the estimation approach in Middleton and Aronow (2011).

B Location invariance of the difference estimator
We follow the formulations of Aronow and Middleton (2011). Invariance to location shifts
implies that the estimates do not substantively change with linear transformations of the
outcome. If the outcome changes such that Y ∗i (dk) = b0+b1Yi(dk), we will assume that the
predictive function will also change by the identical transformation such that

g∗ (Xi,ξi(dk)) = b0 +b1g(Xi,ξi(dk)) .

Since g(Xi,ξi(dk)) is a function designed to predict the value of Yi, then the predicted
outcome would change according to the scale of the outcome.

The difference estimator for covariance adjustment is then therefore invariant to loca-
tion shifts, so that, when the estimator is applied to Y ∗i (dk) = b0 +b1Yi(dk),

Ŷ T
G

∗
(dk) = Nb0 +b1Ŷ T

G (dk).
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By algebraic manipulations,

Ŷ T
G

∗
(dk) =

N

∑
i=1

[
I(Di = dk)

Y ∗i (dk)

πi(dk)
− I(Di = dk)

g∗ (Xi,ξi(dk))

πi(dk)

]
+

N

∑
i=1

g∗ (Xi,ξi(dk))

=
N

∑
i=1

I(Di = dk)

[
b0 +b1Yi(dk)

πi(dk)
− b0 +b1g(Xi,ξi(dk))

πi(dk)

]
+

N

∑
i=1

[b0 +b1g(Xi,ξi(dk))]

=
N

∑
i=1

I(Di = dk)

[
b1Yi(dk)

πi(dk)
− b1g(Xi,ξi(dk))

πi(dk)

]
+Nb0 +

N

∑
i=1

b1g(Xi,ξi(dk))

= Nb0 +b1Ŷ T
G (dk).
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