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Spring 2012

Instructor: Professor Cyrus Samii
NYU Politics Department
19 West 4th Street, Office 424
cdsamii@gmail.com

Class time/location: Wednesdays & Fridays, 10am-noon
19 West 4th Street, Room 212

Office hours: Wednesdays, 1-3pm or by appointment
Teaching Assistant: Omar Garcia Ponce

ogp200@nyu.edu
Recitation: Mondays, 6-8pm

19 West 4th Street, 3rd Floor Lab

Overview

This course provides a contemporary perspective on estimating causal effects in social science research.
We will ground ourselves in methods related to ordinary least squares (OLS) regression, considering it as
a fitting mechanism that can be meaningfully used to estimate conditional expectations with many kinds
of data. We will emphasize research design, causal identification, and robust inference. Other methods of
estimation will be introduced as well and related to OLS-based methods.

Prerequisites

The course requires that students have working knowledge of probability theory, matrix algebra, and calculus
at the level of POL-GA 1250, “Quant I.” The course is intended to provide foundational methodological
training to PhD students in politics as part of their required sequence of courses toward their degree. The
course is not available to students from other programs nor is it open to student auditors.

Texts and software

The course will draw mostly from the following two textbooks:

1. Angrist, Joshua, and Steffan Jorg Pischke. 2008. Mostly Harmless Econometrics. Princeton: Prince-
ton University Press. (Referred to as MHE.)

2. Morgan, Stephen L., and Christopher Winship. 2007. Counterfactuals and Causal Inference: Meth-
ods and Principles for Social Research. Cambridge, UK: Cambridge University Press. (Referred to
as CCI.)

The course will mostly follow MHE, using CCI to provide more intuitive background and illustrations. I
will also supplement the textbooks with notes, sections from other textbooks. Occasionally we will read
methodological papers and journal articles on special topics. I have listed “further reading” for each topic,
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and my lectures will sometimes draw on these. Readings will be available in a public Dropbox (current url
is http://db.tt/Axav2LI7).

The books are each detailed, up to date, and they complement each other well. The books are not terribly
expensive, and so students are recommended to acquire both. MHE can be mathematically difficult at times,
but you are strongly encouraged to dive in, replicate proofs, and work hard to understand it. CCI provides
intuition to keep you sane and grounded.

While these two textbooks are technically sound, they do gloss over some details on mechanics. Un-
fortunately there is no single textbook that I think covers all the bases on mechanics in a manner that is
sufficiently clear and detailed. Nonetheless, textbooks that I recommend include:

• Davidson, Russell, and James G. MacKinnon. 2003. Econometric Theory and Methods. Oxford:
Oxford University Press. (Rather technical but also comprehensive treatment of linear regression for
both micro- and macro-econometric applications. If you can only pick up one reference book, I guess
this would be it, because of its breadth.)

• DeGroot, Morris H., and Mark J. Schervish. 2002. Probability and Statistics (Third Edition). Boston:
Addison Wesley. (Authoritative and technical textbook on foundational topics in statistics.)

• Freedman, David A. 2009. Statistical Models: Theory and Practice. Cambridge, UK: Cambridge
University Press. (Step-by-step, workbook style development of rudiments for regression, statistical
inference, and bootstrapping, with a critical eye. If you feel that there are “holes” in your understand-
ing of regression mechanics, use this book to fill those in.)

• Goldberger, Arthur S. 1991. A Course in Econometrics. Cambridge, MA: Harvard University Press.
(Develops the theory of “agnostic” linear regression step-by-step from first principles. A bit dated,
but a classic. This book leads most naturally into what MHE covers.)

• Wooldridge, Jeffrey M. 2002. Econometric Analysis of Cross-Section and Panel Data. Cambridge,
MA: MIT Press. (Authoritative and technical treatment of linear regression for micro-econometric
applications. If you plan to work on advanced methodology problems that go beyond the scope of this
course, then you will want to get to know this book.)

If you can afford it, it would be a good idea to have at least one or two of these on your shelf as a reference.
As for software, we will work in both R and Stata. Each program has its advantages, and so it is useful

to obtain fluency in both. R is great for programming estimators and algorithms “from scratch,” program-
ming simulations, and making graphics. Some assignments will ask you to do that. However many of the
packaged estimation routines are flawed. Stata’s pre-programmed estimation routines are more reliable,
and some assignments could be done using them; however Stata is very inconvenient for programming,
simulations, or graphics.

Requirements and policies

Homework

You will receive homework about every week and then you will have to submit your completed assignment
by the following week before the end of class; exact deadlines will be made clear on the assignment. You
can work with others to complete the homework. But to receive credit for a homework assignment, you
must turn in a hard copy of your own homework by the stated deadline. Completed homework assignments
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can be submitted as a hand written or typed document, but they must be clearly legible. Estimates obtained
from data analysis programs (e.g., Stata or R) must be formatted into tables resembling journal presentation
styles. Be sure to use a reasonable (2 or at most 3) number of digits after decimal points, report standard
errors along with coefficients, and explain in footnotes what kinds of estimators or adjustments have been
used. Print outs of “raw” screen output or logs will not receive credit. Mathematical derivations should
include all key steps with annotation or explanation for steps that apply important techniques. Homework
will count toward 40% of your grade.

Mid-term exam

An in-class mid-term exam is provisionally scheduled during class on March 2. The mid-term serves the
purpose of evaluating individual progress, which in turn helps me to understand where to place emphasis
for the remainder of the semester. If you are unable to make it to the exam, you must provide notice a week
prior so that we can arrange an alternative time. The mid-term will count toward 20% of your grade.

Final exam

An in-class final exam will be scheduled during the final examination period. The final also serves the pur-
pose of evaluating individual progress, which in turn allows me to provide individualized recommendations
on where students should apply effort to strengthen their methodological foundations. If you are unable to
make it to the exam, you must provide notice a week prior so that we can arrange an alternative time. The
final will count toward 30% of your grade.

Attendance and participation

Attendance is required. Participation in class discussions and activities is required. Attendance and partici-
pation will count toward 10% of your grade.

Special needs

Students with special needs should come to office hours or schedule an appointment with the instructor to
discuss possible accommodation.

Topics

Topics listed below will be covered in around 1-3 class sessions each. Required reading sometimes corre-
sponds directly to material covered in the sessions and sometimes builds up background needed for future
sessions. Most of the required reading comes from MHE and CCI, although the topics covered toward the
end of the semester will draw on other texts that will be made available.

1 Identification, estimation, and inference

Identification concepts: randomization and the experimental ideal, manipulability, potential outcomes and
other models of causality, average treatment effects, dose-response functions. Estimation concepts: es-
timands and estimators, bias, consistency, and efficiency. Inference concepts: finite and infinite popula-
tions, data generating process, implications of randomization and sampling, stochasticity, choosing an “error
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term,” exact distributions, asymptotic distributions and central limit theorem.

Required reading: MHE Ch. 1-2; CCI Ch. 1-2.

Further reading: Angrist and Krueger (1999); Angrist and Pischke (2010); DiNardo and Lee (2011); Freed-
man (1991); Holland (1986); Imbens and Wooldridge (2009); Imbens and Rubin (2011, Ch. 1-3); Manski
(1995, Ch. 1); Pearl (2009, Ch. 1); Rothman (1976); Rosenbaum (1999); Rosenbaum (2002, Ch. 1-3);
Rubin (1978); Rubin (1986).

2 Regression mechanics

Core decompositions and their relation to regression; Frisch-Waugh-Lovell; conditional independence/exogeneity;
omitted variable bias formula; effect heterogeneity and nonlinearity; regression and matching; regression
and simple contrasts; influence and leverage; testing restrictions on coefficients.

Required reading: MHE Ch. 3; CCI Ch. 3 and 5.

Further reading: Freedman (2008a); Freedman (2008b); Imbens and Rubin (2011, Ch. 7); Lin (2011);
Samii and Aronow (2012); Schochet (2010).

3 Notions of bias

Confounding; post-treatment bias; sample selection bias; aggregation/effect heterogeneity biases; misspeci-
fication/extrapolation bias and model dependence; measurement error biases.

Required reading: CCI Ch. 6; Bound et al. (2000, pp. 1-39); Heckman (1979); Humphreys (2009); Imai
et al. (2008); King and Zeng (2006); Lalonde (1986); Rosenbaum (1984).

Further reading: Frangakis and Rubin (2002); Heckman et al. (1998); Hyslop and Imbens (2001); Pearl
(2009, Ch. 3, 6).

4 Control and balance via matching and weighting

Identification under conditional exogeneity; alternative matching and weighting algorithms; estimation and
inference after matching; matching and weighting for multivalued treatments

Required reading: CCI Ch. 4.

Further reading: Busso et al. (2011); Dehejia and Wahba (2002); Hainmueller (2011); Hirano and Imbens
(2004); Ho et al. (2007); Iacus et al. (2011); Imai and van Dyk (2004); Imbens (2000); King et al. (2011);
Lu et al. (2001); Rosenbaum and Rubin (1983); Sekhon (2009); Todd (2006).

5 Robust inference

Clustering, autocorrelation, and spatial dependence; Moulton’s problem; heteroskedasticity and cluster ro-
bust standard errors; bootstrapping; estimating the exact randomization variance.
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Required reading: MHE Ch. 8.

Further reading: Barrios et al. (2010); Cameron et al. (2008); Cameron et al. (2009); Conley (1999);
Davidson and MacKinnon (2004, Ch. 4-5); Freedman (2009, Ch. 8); Hansen (2007); Mosteller and Tukey
(1977, Ch. 7); ; Moulton (1986).

6 Identification with instrumental variables

Exclusion restriction; valid first stage; principal strata; local average treatment effect (LATE); weak instru-
ment; sensitivity analysis.

Required reading: MHE Ch. 4; CCI Ch. 7.

Further reading: Angrist et al. (1996); Baum et al. (2003); Bound et al. (1995); Conley et al. (2010); Deaton
(2010); Heckman and Urzua (2009); Imbens (2010); Imbens and Rosenbaum (2005); Kolesar et al. (2011);
Sovey and Green (2011); Staiger and Stock (1997); Stock et al. (2002).

7 Identification with repeated observations

Adjusting for fixed, unobserved heterogeneity via fixed effects and difference-in-differences; synthetic con-
trol.

Required reading: MHE Ch. 5; CCI Ch. 9.

Further reading: Abadie et al. (2010); Beck and Katz (2001); Bertrand et al. (2004); Green et al. (2001);
Imai and Kim (2012).

8 Regression discontinuity (RD)

Forcing variables; sharp and fuzzy RD; conditional average treatment effect (CATE); local linearity, band-
width, and non-parametric regression; kernel weighting; multiway discontinuities; checks for sorting around
cut-points; endogenous forcing variables; measurement error in forcing variables.

Required reading: MHE Ch. 6; CCI Ch. 9.

Further reading: Caughy and Sekhon (2011); Green et al. (2009); Imbens and Kalyanaraman (2009); Im-
bens and Lemieux (2008); Lee and Card (2008); Lee and Lemieux (2010); McCrary (2008); Papay et al.
(2011); Urquiola and Verhoogen (2009).

9 Distributional effects and quantile regression

Effect heterogeneity; quantile treatment effect; minimum absolute deviations; rank invariance.

Required reading: MHE Ch. 7.

Further reading: Bitler et al. (2006); Chernozhukov and Hansen (2005); Heckman et al. (1997); Koenker
and Hallock (2000).

5



10 Multiple endpoints

Mean effects and weighted mean effects; multiple comparisons adjustments.

Required reading: Anderson (2008); Kling and Liebman (2004); Shaffer (1995).

Further reading: Casey et al. (2011); Clingingsmith et al. (2009); Farcomeni (2008); Gibson et al. (2011);
O’Brien (1984).

11 Missing data and attrition

Bounds; inverse-propensity weighting; imputation.

Required reading: Gerber and Green (2012, Ch. 7); Horton and Kleinman (2007); King et al. (2001); Lee
(2009); Manski (1995, Ch. 2); Vansteelandt et al. (2010).

Further reading: Jones (1996); Puma et al. (2009); Samii (2011).

12 Limited dependent variable effects

(Material to be covered depends on number of sessions that remain at end of semester.) Overview of max-
imum likelihood estimation for models for binary, multinomial, count, and duration data; comparison to
results from OLS estimation and other modes of estimation.

Required reading: Davidson and MacKinnon (2004, Ch. 10-11).

Further reading: Angrist (2001); Fox (2002); Freedman (2006); Greene (2004); Hubbard et al. (2010);
Liang and Zeger (1986); Wooldridge (2002, Ch. 15, 19-20).
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