Comparing the conservative Neyman variance estimator to the HETEROSKEDASTIC ROBUST VARIANCE ESTIMATOR

Cyrus Samii

Consider an experiment on N units in which $0<M<N$ units are randomly assigned to treatment. Denote treatment status for unit i with the random variable, $X_{i} \in\{0,1\}$, for which $\operatorname{Pr}\left(X_{i}=1\right)=M / N$. Then, assign indices such that all the treated group come first, $X_{1}, \ldots, X_{M}=1$ and the control group come after, $X_{M+1}, \ldots, X_{N}=0$. We observe $Y_{i}=X_{i} y_{1 i}+\left(1-X_{i}\right) y_{0 i}$, where $y_{1 i}$ and $y_{0 i}$ are unit i 's fixed "potential outcomes" under treatment and control, respectively. (The lower case emphasizes that they are fixed.) We want to estimate the average treatment effect, β, for this fixed population,

$$
\beta=\frac{1}{N} \sum_{i=1}^{N}\left(y_{1 i}-y_{0 i}\right)
$$

It is well known that in this setting we can estimate β without bias via the simple difference in treated versus control means, or via a regression of the Y_{i} 's on a constant and the X_{i} 's. The two average treatment effect estimators are algebraically equivalent. Call this estimator $\hat{\beta}$.

The so-called "Neymann conservative" estimator for the variance of $\hat{\beta}$ is given by,

$$
\hat{V}_{N}(\hat{\beta})=\frac{1}{M} \frac{1}{M-1} \sum_{i=1}^{M} e_{i}^{2}+\frac{1}{N-M} \frac{1}{N-M-1} \sum_{M+1}^{N} e_{i}^{2}
$$

where e_{i} refers to the regression residual. The regression residual is algebraically equivalent to $Y_{i}-\frac{1}{M} \sum_{j=1}^{M} Y_{j}$ if $i \leq M$ (i.e., treated), and $Y_{i}-\frac{1}{N-M} \sum_{j=M+1}^{N} Y_{j}$ if $i>M$ (i.e., control). V_{N} is known as a conservative estimator because it ignores the (unobserved) covariance between potential outcomes, and is therefore guaranteed to be larger than the true variance of $\hat{\beta}$. (Refer to the Freedman, Pisani, and Purves (1998) textbook for more on this.)

The so-called heteroskedastic robust regression estimator for the variance of $\hat{\beta}$ (as implemented in Stata, with the finite sample adjustment) reduces to,

$$
\begin{aligned}
\hat{V}_{H R}(\hat{\beta}) & =\frac{N}{N-2} \frac{1}{(N-M)^{2}}\left[\left(\frac{N}{M}-1\right)^{2} \sum_{i=1}^{M} e_{i}^{2}+\sum_{i=M+1}^{N} e_{i}^{2}\right] \\
& =\frac{N}{N-2}\left(\frac{1}{M^{2}} \sum_{i=1}^{M} e_{i}^{2}+\frac{1}{(N-M)^{2}} \sum_{i=M+1}^{N} e_{i}^{2}\right)
\end{aligned}
$$

The two variance estimators are algebraically equivalent when $N=2 M$. When such is not the case, they are not equivalent, though rather close.

