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A point that does not receive adequate treatment in the political science literature on
grouped data regression is that the consequences of correlation in the errors depends con-
siderably on corresponding correlation in the regressors (that is, the X’s). The point was
elaborated by Moulton (1986) and Angrist and Pischke (2008) explore the consequences in
some more detail. To their credit Beck and Katz (1995) and Beck and Katz (1996) raise this
point, however they did not elaborate on the consequences for estimating standard errors.
To see how this works, consider a simple data generating process with only one covariate
taking on values, xit. When the data are assumed to be generated by an iid stochastic pro-
cess with fixed N and growing T , the central (“meat”) term in the formula for the variance
of regression coefficients is given by:
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We have not fixed the regressors here, and so by iterated expectations, we can rewrite the
above as,
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The interior conditioning on ut allows us to check properties of this quantity over different
assumptions on the process generating the time-period-specific vectors, xt.

1 What we see is
that if xit are not correlated across-cross-sections (i = 1, ..., N)—that is, when there is no
contemporaneous correlation in the regressors—then it must be that for i ̸= j, E (xitxjt|ut) =
0, in which case the terms containing the uitujt for i ̸= j are zero, even if E (uitujt) ̸= 0.
Kezdi (2003) developes this point for an arbitrary number of regressors. In a given sample,

1If the xt and ut are assumed independent of each other we can even drop the conditioning.
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a sufficient statistic that allows one to study this possibility is,
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which can be put onto a normalized scale by using the “intra-class correlation” for the xit’s.
Contemporaneous correlation in the xt’s is checked computing the intra-class correlation
coefficient that groups over time periods. The same point applies to serial correlation, and
serial correlation in xi’s is checked with the intra-class correlation coefficient that groups
over cross-sections.

The upshot is that contemporaneous correlation or serial correlation in the errors con-
tributes to the variance of regression coefficient estimates only to the extent that it is matched
by corresponding correlations in the regressors. If one suspects, say, contemporaneous cor-
relation in the errors but the contemporaneous correlation in the regressors is very close
to zero, then any contemporaneous correlation in the errors will be of little consequence in
terms of computing correct standard errors. In such a case, an analyst seeking to minimize
parametric assumptions may reasonably prefer estimates that ignore contemporaneous cor-
relation and standard error estimates robust to serial correlation (e.g., ASEs), over a possibly
misspecified parametric correction for serial correlation (e.g. Prais-Winsten for AR(1)) with
standard error estimates robust to most inconsequential contemporaneous correlation.

The point is illustrated starkly in Figure 1. The top row and bottom row each represent
different data generating processes. For both cases, we have yit = β0 + β1xit + ϵit, where
I’ve set β0 to 0 and β1 to 1 and the xit’s are normal draws. In both cases, the data consist
of 50 clusters (indexed by i) of 50 units each (indexed by t), and the ϵit are normal errors
uncorrelated with the xit’s. Within each cluster the ϵit’s have correlation of 0.9. For the
top row, the xit’s had zero correlation within clusters, whereas for the bottom row the
correlation is again 0.9 with clusters. We see that when there is no correlation in the x’s,
then the correlation in the ϵ’s doesn’t contribute to the variance of regression coefficient
over simulations, and so the vanilla OLS standard errors are accurate. The cluster robust
standard errors are also accurate although they exhibit a bit more volatility. But when there
is correlation in the x’s to go along with correlation in the ϵ’s, then this clearly affects the
sampling variance of the regression coefficient—note how the dashed line is now way out at
about 0.14, and the cluster robust standard errors are needed to obtain a nearly unbiased
estimate (it still appears to be somewhat attenuated on average; the code I used didn’t
employ the finite sample correction, so that might explain it). We see that the cluster robust
standard errors are quite volatile, but the vanilla OLS standard errors never even come close.

Correlations in the regressors can be checked in sample data, e.g. by checking the intra-
class correlations of regressors. The examples here show why it is useful to do so, allowing
the analyst to make better-informed decisions about what kinds of standard estimates are
likely to be the least biased among a set of imperfect alternatives.
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Figure 1: Kernel density plots showing the distribution of standard error estimates for the
coefficient on xit from 500 simulation runs for OLS standard errors and cluster robust stan-
dard errors. The dashed line shows the actual standard deviation of the regression coefficient
over the 500 runs, and the solid line shows the mean of the standard error estimates. For
all four cases, there is substantial intra-cluster correlation in the errors, but only for the bot-
tom two is there any intra-correlation in the x′

its. “cc” in the plot titles refers to “clustered
correlation.”
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